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ABSTRACT: A study of the dynamic response of Bernoulli-Euler beam to constant bi-parametric elastic 

foundation to moving distributed forces is presented. The transformed equation governing the system is 

obtained by means of the Galerkin’s technique. The cases of the dynamic response of the beam to distributed 

loads of equal magnitude are studied. Numerical examples are given in order to determine the effects of various 

parameters on the response of the simply-supported Bernoulli-Euler beam. 
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I. INTRODUCTION 
Beams are of great importance in construction engineering. This may be due to their light weight and 

this has contributed to their widely usage. 

The dynamic response of Bernoulli-Euler beam have been extensively studied especially for simply 
supported beams [1], [2], [3], [4], [5]. In most of the previous works, the problem of assessing the dynamic 

response of Bernoulli-Euler beam carry moving loads, has been restricted to the case when the loads are 

simplified as moving concentrated forces [6], [7], [8] and mostly placed on Winkler elastic foundation [9], [10]. 

The classical Winkler model has various applications in construction engineering and this model 

suffers several criticisms as it has some shortcomings due to the discontinuity of the adjacent displacement [11]. 

To tackle this deficiency, a better model that introduced shear interaction between adjacent Winkler spring 

elements was introduced [12]. 

Several authors in the area of structural dynamics have thoroughly investigated the dynamics and 

stability of the Winkler-type foundation model by both approximate methods [13] and exact approaches [14]. In 

1991, [15] presented some finite element models for the static analysis of Euler-Bernoulli beam resting on a 

Winkler-type foundation. In 2010, Omolofe [16] investigated the dynamic response to moving load of an 

elastically supported non-prismatic Bernoulli-Euler beam on variable elastic foundation and obtained analytical 
solutions for which the numerical solutions are displayed in plotted curves. 

In this paper, the problem of dynamical analysis of Bernoulli-Euler when it is simply supported and 

resting on constants bi-parametric elastic foundation under moving distributed forces are presented. All the 

components of inertia terms are considered in the analysis. While section II describes the theory and brief 

description of the problem under investigation, section III focuses on the technique involved in the 

transformation of the fourth order partial differential equation of the dynamical system. Some remarks on the 

analytical solution so obtained are reported in section IV and finally, numerical results are displayed in plotted 

curves in section V. 

II. THEORY AND FORMULATION 
The problem of the displacement response of simply-supported Bernoulli-Euler beam resting on 

constant bi-parametric elastic foundation carry moving distributed loads is governed by the fourth order partial 

differential equation 
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where E is the young modulus, ( , )Y x t is the transverse displacement, ( )
m

Q x  is the bi-parametric elastic 

foundation, ( , )P x t is the moving load. Also, ( , )H x c t is the Heaviside function defined as  

 

0 ,      fo r  x < 0
( , )

1,       fo r  x > 0  
H x c t


 


       (2.2) 

In this paper, when the effect of the mass of the moving load on the beam is considered, ( , )P x t takes the 

form 

  

2 2 2

2
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( , ) ( , ) 2 ( , )
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t x t x
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   (2.3) 

The boundary conditions for our dynamical system are arbitrary and the initial conditions without any loss of 

generality are taken to be 

( , 0 ) 0 ( , 0 )Y x Y x
t


 


       (2.4) 

The relationship that exists between the foundation reaction and the lateral deflection ( , )Y x t is given by 

  

( ) ( , ) ( , )
m

Q x G m Y x t K m Y x t
x x

  
   

  

     (2.5)

 

where G m and K m  are two constant parameter of elastic foundation. Thus, G m is the constant foundation 

stiffness and K m  is the variable shear modulus. To this end, equation (2.5) can be written as 

  

2

2

( , ) ( , )
( , ) ( , )
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Substituting equations (2.2) to (2.6) into equation (2.1), one obtains 

4 2 2
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2
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   
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  (2.7) 

III. MATHERIALS AND METHOD 
A close form solution to equation (2.7) does not exist, so the elegant Galerkin’s method described in 

[10] is employed to tackle the fourth order partial differential equation. The method is presented in the form 

 1

( , ) ( ) ( )

j

j i i

i

Y x t W t U x



   

      

 (3.1) 

where ( )
i

U x is chosen such that the desired boundary conditions are satisfied. And since we are considering 

simply supported boundary condition, ( )
i

U x is defined thus, 

 

s in
( )

i

i x
U x

L


          (3.2) 

Substituting equation (3.1) into equation (2.7), taking note of equation (3.2) one obtains  
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wher e ( )H x c t have been defined as 

 
0
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    (3.4) 

imposing orthogonaliy condition, equation (3.3) after simplification becomes 

0
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which can be re-written as 
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equation (3.5) when re-arranged gives 
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so that 
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Further arrangements of equation (3.9) give 
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where 
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and by Laplace methods, one obtains 
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when solutions of
a

T and
b

T are substituted into equation (3.14), one obtains 
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which when inverted gives, 
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which represents the displacement response to moving distributed force of simply supported Bernoulli-Euler 
beam resting on constant bi-parametric elastic foundation.  

Next, it is pertinent to seek solution to the moving distributed mass of the problem. If 
0

  is not equal to 

zero in equation (3.9), it means that the inertia term is retained and it is evident that an exact solution to the 

equation (3.9) is not possible. A modification of Strubles technique extensively discussed in [10] is used to 

obtain the modified frequency. To this end, equation (3.9) is written in the form  
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Further re-arrangements give 
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when
1

 ,the homogenous part of equation (3.19) can be written as 

 
   

2

0 1 1 1
( ) ( ) co s ( ) 0

i i i i
W t t t W t             (3.20) 

where ( )
i

t and
i

 are slowly varying functions or equivalently. 

By Struble’s method, one obtains 
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            (3.21) 

and 

  

2 2

0

0 1
( ) ( ) 0

2

o

i i i

L c
Y t Y t


            (3.22) 

    

 which when solved gives 
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0

( )
2

m m

i m m

B
t C




         (3.23) 

and 

 

2

1 0
( )

2

o

i m m

L c
t t  

 
   
 

      (3.24) 

where
m m

 is a constant. 

    
Substituting (3.23) and (3.24) into equation (3.20), one obtains 

 
1

0

( ) c o s
2

m m

i m m m m m

B L
W t C t 




         (3.25) 

Therefore when the mass effect of the particle is considered, the first approximation to the homogenous 

system is given as 

   ( ) ( ) c o s
i i m m m

W t t t           (3.26) 

where 



Bernoulli-Euler Beam Response to Constant Bi-parametric… 

 
w w w . a j e r . o r g  

 

Page 116 

2
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       (3.27) 

is the modified frequency corresponding the frequency of the free system due to the presence of the moving 

distributed mass. Thus, 
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 

       (3.28) 

Equation (3.28) is a prototype of equation (3.10) and following similar arguments, one obtains  

2 2

c o s c o s c o s
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i m m
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i m i m

t t tM g L
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which when inverted gives, 
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   
   

  
  (3.30) 

which represents the displacement response to moving distributed mass of  simply supported Bernoulli-Euler 
beam resting on constant elastic foundation.  

 

IV. REMARKS ON ANALYTICAL SOLUTION 
4.1 Effect of Resonance 

When an undamped system such as this is considered, it is pertinent to examine the resonance condition 

of the structure. Following [10], and from equation (3.17), the Bernoulli- Euler beam traversed by a moving 

distributed force will be in a state resonance when 

0

i c

L


           (4.1) 

while equation (3.30) shows that the same Bernoulli- Euler beam reaches resonance effect at 

m

i c

L


          (4.2) 

where 

 
2 2 0

0 1 0m
L C    

       
(4.3) 

Thus, 
2 2 0

1 0
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2m

i cL C
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  

     

(4.4) 

Clearly, 
2 2 0

1 0

1
1 1

2
i

L C    
 

 

 

V. NUMERICAL RESULTS 
From the analytical solutions, calculations of practical interests in structural engineering and physics 

are presented in this section. The simply supported Bernoulli-Euler beam of length L 12.123m, velocity 

c=8.12m/s, flexural rigidity 
1 8 2

6 .0 6 8 1 0 /E J N m  , and for the shear modulus Km, the values are varied 

between
3

0 /N m and
5 2

5 1 0 /N m , for foundation stiffness Gm varies between 0N/ m3 

and
6 5

3 1 0 / ,N m axial force Nm values varied between 
3

0 /N m and
5 2

1 0 /N m  and the mass per unit 

length of the structure is 4501.537g/m. The results are shown on the various curves below for the simply 

supported Bernoulli-Euler beam on constant bi-parametric elastic foundation. 
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Figure 1and 2 depict the flexural deflections of the beam resting on constant bi-parametric elastic 

foundation at constant velocity for both moving distributed force and moving distributed mass.  It is clearly seen 

that for fixed values of the shear modulus Km and foundation stiffness Gm, the displacement response of the 

beam decreases as the values of the prestress function increases. 

 

   

Fig.1: Displacement response of simply supported Bernoulli-Euler beam for moving distributed force for 
various values of axial force Nm and fixed values of shear modulus and foundation stiffness. 

 

   

Fig.2: Displacement response of simply supported Bernoulli-Euler beam for moving distributed mass for 

various values of axial force Nm and fixed values of shear modulus and foundation stiffness. 

 
Figure 3 and 4 displays the deflection profile of the simply supported Bernoulli-Euler beam resting on constant 

bi-parametric elastic foundation at constant velocity for both moving distributed force and moving distributed 

mass respectively. It is found that the dynamic deflections of the structure decreases as the values of the shear 

modulus Km increases for fixed values of the prestress function Nm and foundation stiffness Gm. 
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Fig.3: Deflection profile of simply supported Bernoulli-Euler beam for moving distributed force for various 

values of shear modulus Km and fixed values of axial force and foundation stiffness. 

 

   

Fig.4: Deflection profile of simply supported Bernoulli-Euler beam for moving distributed mass for various 

values of shear modulus Km and fixed values of axial force and foundation stiffness. 

 

Similarly, figure 3 and 4 displays the dynamic deflection of the structure resting on constant bi-

parametric elastic foundation at constant velocity for both moving distributed force and moving distributed 
mass. For fixed values of prestress Nm, shear force Km and various values of foundation modulus Gm, it is 

found that the dynamic deflections of the beam decreases as the values of the foundation stiffness Gm increases. 

   

Fig.5: Deflection profile of simply supported Bernoulli-Euler beam for moving distributed force for various 

values of foundation stiffness and fixed values of axial force and shear modulus. 
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Fig.6: Deflection profile of simply supported Bernoulli-Euler beam for moving distributed mass for various 

values of foundation stiffness and fixed values of axial force and shear modulus. 

 

The comparison of the displacement response of the simply supported Bernoulli-Euler beam resting on 

constant bi-parametric elastic foundation at constant velocity for moving distributed force and moving 

distributed mass. It is observed that the moving distributed force solution is not an upper bound for moving 
distributed mass solution as shown in the figure below    

   

Fig.7: Comparison of the displacement response of simply supported Bernoulli-Euler beam resting on 

bi-parametric elastic foundation for fixed values of foundation stiffness, axial force and shear modulus. 

 

VI. CONCLUSION 
The problem of dynamic analysis under a moving distributed load of a simply supported Bernoulli-

Euler beam on constant bi-parametric elastic foundation has been solved. And in view of the condition of 

resonance established in section VI, it is deduced that for the same natural frequency, the critical speed for the 

moving distributed force problem is greater than that of the moving distributed mass problem. Hence, for the 
same natural frequency, resonance is reached earlier in the moving distributed mass problem than in the moving 

distributed force. 
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