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ABSTRACT: For given arbitrary numbers d, .k =1(1)n-1,d ,k =1(1)n-1 and d, .k =1(1)n, we

seek to determine explicity polynomials R_(x) of degree atmost 3n-3 (n even), given by:

(1) R,(X)=Y dU, (x)+3 dV, (x)+> d, W, (x),

Such that

R,(x,)=d, .k =1(1)n,

where {xk}n , are the zeros of n" Hermite polynomial H (x) and {yk}:: are the zeros of H ().

Let the interpolated function f be continuously differentiable satisfying the conditions:
Lim

|x

S +oox'f (x)p(x)=0, y=0,1,2.,.....
and
Lim

—x%/2
X

— +ox'p(x) f'(x)=0, where p(x)=¢e
furtherin(1) d, = f(y,), k=(1)n -1,

. : 1
d, = f'(yk),&c_{e‘”kw(f ',—J,k—l(l)n—l,o<5<1

Jn
d = f'(x,).k=1(1)n, then for the sequence of inter polynomials R (n=2,4,...), we have the
estimate

2
— VX

1
e —_—

3

)Jlog n), v>—

Jn 2
Which holds the whole real line, O does not depend on n and x and o is the modulus of continuity of f

introduce by G. Freud.
Keywords: Hermite, Interpolation
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l. INTRODUCTION
Earlier Pal [8] proved that when function values are prescribed on one set of n points and derivative values on

another set of n -1 points, then there exists no unique polynomial of degree < 2n -1, but prescribed
function value at one more point not belonging to the former set of n points there exists a unique polynomial of

degree < 2n - 1. Eneduanya [2] proved its convergence on the roots of z (x).

* *

Let -0 <X, <X << X, <X <o

be a given system of (2n -1) distinct points. L -Szili [11] determined a unique polynomial R~ lowest
possible degree 2n-1 (for n even) given by:

R, (x) = X Yoo (1) + VB, (),

satisfies the conditions:

R,(0)=0
If the interpolated function f is continuously differential

Lim
f(0)=0 and |x
Lim

|x

X212

> we  xf (x)=0, v=0,1,2,..

—x%12

— of '(x)e =0, then the sequence {R_(x)} satisfies the relation
1

f(x)-R, (x)|=0(o(f',—=)logn), v>1

o

2
— VX

e

which holds on the whole real line and 0 does not depend or n and x.
Further K.K. Mathur and R.B. Saxena [6] extended the results of L. Szili to the case of weighted
(0,1,3))-interpolation on Infinite interval.

In this paper, we consider a special problem of mixed type, (0,1;0)-interpolation on the zeros of
Hermite polynomial

(1.2) Let {Xk}::1 and {yk}:: be the zeros of H (x) and H '(x), where

The fundamental polynomials of Lagrange interpolation are given by

(1.2) 1, (x)=— ", () . k=1(1)n.
Hn(Xk)(X_Xk)

and

(1.3) L, (x)= - H;(X) , k=1(1)n-1

In this paper, study the following:

(0,1:0) - Interpolation on Infinite Interval.
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Let n be even, then for given arbitrary sequence of numbers {dk}:f J{d;}and {d} , thereexistsa
= k=1 k=1

unique polynomial R_(x) of degree < 3n - 3,such that

{Rn(yk):dkr k=1(1)n-1
(L4) [Re(r)=dis e=1()n -1
|and

LR (v =d] K =1()n
Fornodd, R, (x) does not exist uniquely. Precisely we shall prove the following:

Theorem 1:
For n even,

n-1 n-1
(1-5) Rn(x):zdkuk(x)+zdl:Vk(X)+zdek(X)’
k=1 k=1
where U, (x), k =1(1)n-1and W, (x), k =1(1)n are the fundamental polynomial of the first kind and

V. (x), k=1(1)n-1 are the fundamental polynomials of the second king of mixed type (0,1:0)

interpolation. Each such fundamental polynomial is of degree at most 3n — 3, given by:

(1.6) U, (x)= o)L oft-2y, ()] ~1(1)n-1

Ho (Y)

(L7) v, (x) = ,, . k=1(1)n-1

and

(1.8) wk(x):m, k=1(1)n.

2

Hy (H )

where 1, (x) and L, (x) are given by (1.2) and (1.3) respectively

Theorem 2:
Let the interpolated function f : R — R be continuous differentiable, such that
[|Lim 2k
x| > +ox” f(x)p(x)=0 (k=0,1,..)
(1.9 Jand
|Lim 7ﬂx2
Hx — +op(x)f'(x)=0, where p(x)=e * ,0< fg<l.

Further, taking the numbers &, as:
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(1.10) 5k=0(e‘syf)w[f';i}k:l(l)n—l,o<5<1,

A

where w is the modulus of continuity of f ', then

(1.12) R, (f.,x)=>" f(yk)Uk(x)+Z SNV (x)+D F(x )W, (x)

satisfies the relation:

3 3
|,v>—
) 2

2
= VX

e

f(x)-R (X)‘=O|(logn w(f';i\
" SR ERNAY

which holds on the whole real line and 0 does not depend on n and x.

Remark.
w ( f,&) denotes the special form of modulus of continuity introduced by G. Freud [3] given by:
(1.12) w(f,s)=sup|w (x+t)f(x +t)-w (x)f(x)+ [T (sx)w ()
o<t<S

where

|x|, for |x| <1

T(x)=

L for [x|>1
and . denotes the sup-norm in C(R). If feC(R) and
Lim Lim

x| > ©W (x) f (x)=0, then & - ow(f,5)=0.
I1. PRELIMINARIES.
In this section, we shall give some well known result which we shall use in the sequel.

The differential equation satisfied by H (x) is given by:

2.1)
2.2)

H,(x)-2xH (x)+2nH (x)=0
H, (x)=2nH _ (x).

From (1.2), we have

(2.3) lK(xj):J for . k=1(1)n




American Journal of Engineering Research (AJER) 2014

( Hr;(xj)
, | — L j#k
(2'4) 1k(Xi):4Hn(Xk)(X1_Xk)
|ka . j=k.
Form (1.3), one has
(0 j#k
(2.5) Lk(yj):l for . k=1(1)n-1
{1 j=Kk
2 k2
(2.6) X, 00—
n

2.7) Hn(x)=o{n’““\lz"n!(1+3\/Me*M)},xeR

(2.8) H;(x)2c22*1[1}e‘”5,0<5<1.

2

2.9) Z Hi(y)iHi(X) CHLHLL () -HL L () HL ()

e 2'i! 2" (n-1)!(y-x)

From (1.2) and (2.9) at y = x,_, we have

‘1,
1)2"+n!\/n_e2( 2

2.10 =
(2.10) L (%) T v, > 1
(2.11) Zn“efexkzo(\/n_), where >0
(2.12) n e (Mo (x,)) =0(2""n1) , 0<o<1
and "

an(g\ 1’
(2.13) HZJJ nY, n=1.2,..

(n+1):

I11. PROOF OF THEOREM 1.
Using the results given in preliminaries and a little computation, one can easily see that the
polynomials given (1.6), (1.7) and (1.8) satisfy the conditions:

For k =1(1)n-1
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[ (0 j= K
IUk(yi)=Jt for . i=1(1)n-1,U, (y;)=0,j=1(1)n-1
| 1 j=k
&1 Jand
Iuk(xj)=o, i=1(1)n
|
|
L

For k =1(1)n-1

( (0 j =k

IVk(yj)=°'i=1(1)“—1, Vk'(y,-):l for L j=1(1)n-1

I {1 j=k
(3.2) {and

Ivk(xj)=o, j=1(1)n

|

|

L
For k =1(1)n

|fwk(yj)=0, j=1(1)n-1, W, (y,)=0,j=1(1)n-1
(3.3) J (0 j=k

|Wk(xj)=l for . i=1(1)n

{ {1 j=k

IV. TO PROVE THEOREM 2, WE NEED

Lemma4.1

For k =1(1)n-1and x e (-, ), We have,

, v, >1 and k =1(1)

where L, (x) isgiven by (1.3).
Proof.
From (2.9)at y = y, and using (1.3) and (2.2), we get
2" (n—-1)1?
L ()< (-1t L
Ho(y,) m 2!
which on using (2.7) leads the lemma.

)

ERGIEHES!
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V. Estimation of the fundamental polynomials
Lemma 5.1:

For k =1(1)n-1 and x e (-0, )
n-1 ) , 3
> g/ ‘Uk(x)‘:o(\/n_)ev" ,v>—and 0< g8 <1,
k=1 2

where U (x) is given by (1.6).

Proof.
From (1.6), we have

1/2

when ‘x -y l<n

(5.1) =1 +1

Using (2.7), (2.13) and lemma 4.1, we get

(5.2) I1=O(\/n_)eﬂxz,v>—

2

Similarly, owing to (2.6), (2.7), (2.13) and lemma 4.1, we have

(5.3) I2=0(\/n_)eﬂxz,v>—

2

On combining (5.2) and (5.3), we get the lemma.
When |x -y, | > n'"?, using (1.3), we have

G n1 g # H . (x)[L] (x)

BYy
=le ‘Uk(X)‘Sij1 ‘Hn(yk)
ez (ol ol ()

S HLool ool

B

=~

=1l,+1,

From lemma 4.1,(2.7) and (2.13) we get
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2 3
(5.4) I3=0(\/n_)e” Lvs 2
2

Similarly, using (2.6), (2.7), (2.13), lemma 4.1, (2.1) at x = y, and (2.2) we get
V)(2 3
(5.5) I4=0(\/n_)e v 2
2

Owing to (5.4) and (5.5), we get the lemma.

Lemma 5.2

For k =1(1)n-1 and x e (-o,x), Wehave

2
-1 n-1 g%

i, o< 3 S s ()

= "N CNES

B

=~

Using (2.1)at x = y,, (2.2), (2.7), (2.13) and lemma 4.1, we get the required lemma.
Lemma 5.3
For k =1(1)n and xe (-o,x)

n ) 3
Zeﬁxk Wk(x)‘:o(eVX ),v>— and 0< B <1.
k=1 2

2

Where W, (x) is given by (1.8).

Proof.

From (1.8), we have
e ()

" 2 1 (x
L QD a

o H ()

Using (2.8), (2.10), (2.12) and (2.13), we get the lemma.

V1. IN THIS SECTION, WE MENTION CERTAIN THEOREMS OF G. FREUD AND L.
SZILI REQUIRED IN THE PROOF OF THEOREM 2.

Theorem (G. Freud, Theorem 4[4] and theorem 1[3])
Let f : R — R be continuously differentiable. Further, let

and
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then there exist polynomials Q (x) of degree < n, such that

(6.1) p(X)‘f(X)—Qn(X)‘:O(\/ln_] [ n}

where  stands for modulus of continuity defined by (1.12) and p ( x) the weight function.

Szili ([11] lemma 4, theorem 4) established the follow

(6.2) p ()R (x)|=0(1),r-0,1: xeR
Vil. PROOF OF THE MAIN THEOREM 2.
(7.1) Q, (¥) =X Q, (¥ )V, (¥)+ X Q, (¥ )V, (x)+ X Q, (%) W, (x)

From (7.1) and (1.11), we have

2

U, (x)]e "

' 8., (o)

2

-Q. Mk (X)‘e—ﬁyk

_ux? " _py?
e " Y e T (x,)
k=1

Owing to (6.1), (6.2), (1.10) and lemmas 5.1-5.3, theorem follows
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