
American Journal of Engineering Research (AJER)   2014 
 

 
w w w . a j e r . o r g  
 

Page 245 

American Journal of Engineering Research (AJER) 

e-ISSN : 2320-0847  p-ISSN : 2320-0936 

Volume-03, Issue-01, pp-245-250 

www.ajer.org 
 

Research Paper                                                                                   Open Access 
 

 

Comparison Of Some Numerical Methods For The Solution Of 

First And Second Orders Linear Integro Differential Equations. 
             

Taiwo, O. A.,  Jimoh, A.  K .  and   Bello, A . K. 
Department Of Mathematics,University Of Ilorin, Ilorin, Nigeria. 

+ Department Of Statistics And Mathematical Sciences, Kwara State University, Malete, Nigeria. 

 

Abstract: - This paper deals with the comparison of some numerical methods for the solutions of first and 

second orders linear integro differential equations. Two numerical methods employed are Standard and 

Perturbed Collocation using, in  each case, power series and canonical polynomials as our basis functions. The 

results obtained for some examples considered show that the perturbed Collocation method by Canonical 

Polynomials proved superior over the  Perturbed Collocation method  by power series and  the Standard 

Collocation method by power series and canonical polynomials respectively. Three examples are considered to 

illustrate the methods. 
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I. INTRODUCTION 
Integro differential equation is an important aspect of modern mathematics and occurs frequently in 

many applied fields of study which include Chemistry, Physics, Engineering , Mechanics, Astronomy, 

Economics, Electro – Statics and Potential. 

In recent years, there has been growing interest in the mathematical formulation of several risk 

phenomena and models. It is found that most of the models if not all, have always assumed integral or integro 

differential equations. As reported in literature, integro differential equations are very difficult to solve 

analytically (See [ 1 ] ) and so numerical methods are  required. 

Several research works have been carried out in this area in recent years. Among the popular methods used by 

most numerical analyst are wavelet on bounded interval   2  , semiorthogonal  Spline Wavelets  3 , Orthogonal 

Wavelets  [4], Wavelet-Galerkin Method [5] and Multi-Wavelet Direct Method [6] .  Other methods  include 

Quadrature  Difference Method [7] , Adomain  Decomposition Method [8] , Homototpy Analysis Method [9],  

Compact Finite Difference Method  [10],  Generalised  Minimal Residual [11] and  Variational  Iteration 

Method  [12]. 

Without loss of generality ,we consider the general second order linear integro-differential equation defined as:  

 
b

a
o xfdttytxkxyPxyPxyP )1()()(),()('')(')( 21  

With the boundary conditions 

)2()(')( Aayay   

And, 

)3()(')( Abyby   

Where 210 ,, PPP are constants,  ),( txk and  )(xf  are given smooth functions and )(xy  

is to be determined. 

Remark:  In case of first- order Integro –Differential Equation considered,  2P in equation (1) is set to zero with 

initial condition given as 

)3()( aAay   
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II. METHODOLOGY AND TECHNIQUES 
In this section, we discussed the numerical methods mentioned above based on power series and canonical 

polynomials as the basis function for the solution of equations (1)—(3) 

 

III. STANDARD COLLOCATION METHOD BY POWER SERIES (SCMPS) 
We used this method to solve equations (1)—(3) by assuming power series approximation of the form: 

)4()(
0





N

r

r

rN xaxy  

Where , )0( rar  are the unknown constants to be determined. Thus, equation (4) is substituted into 

equations (1),  (2) and  (3), we obtained 

 
b

a
NNNNo xfdttytxkxyPxyPxyP )5()()(),()('')(')( 21  

together with the boundary conditions  

)6()(')( Aayay NN   

and, 

)7()(')( Abyby NN   

Equation (5)  is re-written as 
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Hence ,further simplification of  equation (8), we obtained  

  )9()(),()2)(1()1(
00

22110 xfdttatxkxarrParPaP
b

a

r
N

r

r

N

r

r

rrr   


  

The integral part of equation (9) is evaluated and the left -over  is then collocated at the point 

kxx   ,    we obtained  

  )10()(),()2)(1()1(
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22110 k
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krrr xfdttatxkxarrParPaP   


  

Where, 

)11(1...,.,3,2,1,
)(




 Nk
N

kab
axk  

 

Thus, equation (10) gives rise to (N-1) algebraic linear equation in (N+1) unknown constants. Two 

extra equations are obtained using equations (6) and (7) . Altogether, we have (N+1) algebraic linear equations 

in (N+1) unknown constants. These (N+1) algebraic linear equations are then solved by Gaussian elimination 

method to obtain the (N+1) unknown constants which are then substituted back into equation (4) to obtain the 

approximate solution. 

 

IV. PERTURBED COLLOCATION METHOD BY POWER SERIES (PCMPS) 
 We used the method to solve equations  (1)—(3) by substituting equation (4) into a slightly perturbed equation 

(1) to get  

  


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b

a
NN
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r

r

rNNNo xTxTxfdttatxkxyPxyPxyP )12()()()(),()('')(')( 121

0

21   

Where, 1  and 2  are two free tau parameters to be determined along with the constants )0( rar  and TN(x) 

is the Chebyshev polynomial of degree N in [a,b] defined by  

)13(0,)()(
2

2)( 11 







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xT NNN  

Hence, further simplification of equation (12), we obtained 
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The integral part of equation (14) is evaluated and the left-over is then collocated at the point x = xk , we 

obtained 

 

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where, 

)16(1...,3,2,1,
)(




 Nk
N

kab
axk

Thus, equation (15) gives rise to (N+1) algebraic linear equations in (N+3) unknown constants. Two extra 

equations are obtained using equations  (6) and (7). Altogether, we have (N+3) algebraic linear equations in 

(N+3) unknown constants. These (N+3) algebraic linear equations are then solved by Gaussian elimination 

method to obtain the (N+1) unknown constants ra  (r ≥0) together with the parameters 1  and 2  which are 

then substituted back into equation (4) to obtain the approximate solution. 

 

V. STANDARD COLLOCATION METHOD BY CANONICAL  POLYNOMIALS 

(SCMCP) 
We used the method to solve equations (1)-(3) by assuming canonical polynomial approximation of the form  

)17()()(
0





N

r

rrN xaxy  

Where, x represents the independent variables in the problem, )0( rar  are the unknown constants to be 

determined and )0)((  rxr are canonical polynomials which should be constructed. 

Thus, equation (17) is substituted into equations (1)-(3), we obtained 
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Together with the conditions 
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Equation (18) is re-written as 
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Hence, further simplification of equation (21), we obtained  
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The integral part of  equation (22) is evaluated and the left-over is then collocated at the point x = xk , we 

obtained  
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where

)24(1...,.,3.,2,1,
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 Nk
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kab
axk  

Thus, equation (23) gives rise to (N-1) algebraic linear equations in (N+1) unknown constants. Two 

extra equations are obtained using equations  (19) and (20). Altogether, we have (N+1) algebraic linear 

equations in (N+1) unknown constants. These (N+1) algebraic linear equations are then solved by Gaussian 

elimination method to obtain the (N+1) unknown constants which are then substituted back into equation (17) to 

obtain the approximate solution. 

 

VI. PERTURBED COLLOCATION METHOD BY CANONICAL POLYNOMIALS 

(PCMCP) 
We used the method to solve equations (1)-(3) by substituting equation (17) into a slightly perturbed equation 

(1) to get 

  
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Where, 1  and 2  are two free tau parameters to be determined along with the constants )0( rar  and Фr(x) 

is the canonical polynomial of degree N.  

Hence, further simplification of equation (25), we obtained 
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The integral part of  equation (26) is evaluated and the left-over is then collocated at the point x = xk , we 

obtained  
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Thus, equation (27) gives rise to (N+1) algebraic linear equations in (N+3) unknown constants. Two 

extra equations are obtained using equations  (19) and (20). Altogether, we have (N+3) algebraic linear 

equations in (N+3) unknown constants. These (N+3) algebraic linear equations are then solved by Gaussian 

elimination method to obtain the (N+1) unknown constants  ar(r ≥0) together with the parameters 1  and 2  

which are then substituted back into equation (17) to obtain the approximate solution. 

 

VII. CONSTRUCTION OF CANONICAL POLYNOMIALS 
The canonical polynomials denoted by Фr(x) is generated recursively from equation (1) as follows: 

Following [13], we define our operator as: 

  012

2

2 P
dx

d
P

dx

d
PL   

Let   
r

r xxL  )(  
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rrrr xPrxPxrrPLx 0
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Implies, 
rrrr
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2 )1()}({  
 

  )()()()1()}({ 01122 xLPxrLPxLrrPxLL rrrr    

We assumed that L
-1

 exists, then 
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 rx )()()()1( 01122 xLPxrLPxLrrP rrr    

Implies, 

   (29)0P 0,r;)()()1(x
1

)( 01122

r

0

  xrPxrrP
P

x rrr  

Hence, equation (29) is our constructed recursive canonical polynomials used in this work. 

Remarks: 

i. First order linear Integro-Differential Equation: For the purpose of our discussion, we set P2=0 in equation 

(1) and this resulted to first order linear Integro-Differential equation considered in this work together with 

the initial condition    y(a)=A                                                                                                                 (30) 

ii. Errors: For the purpose of this work, we have defined maximum error used as 

Maximum Error = )()(max xyxy N
bxa


  

8. Numerical Examples 

Examples 1: Consider the first order linear integro-differential equation 

 

x

dttyxyxy
0

)31(1)(5)(2)('  

with initial condition 

y(0)=0 

The exact solution is given as )2sin(
2

1
)( xexy x . 

Table 1: Absolute maximum errors for example 1 

N Standard Collocation 

Method by Power 

Series (SCMPS) 

Standard Collocation 

Method by Canonical 

Polynomials(SCMCP) 

Perturbed Collocation 

Method by Power 

Series (PCMPS) 

Perturbed Collocation 

Method by Canonical 

Polynomials (PCMCP) 

4 3.30842E-4 8.01922E-2 2.80105E-5 9.84836E-4 

6 1.77942E-5 3.48756E-4 5.48351E-6 1.91790E-6 

8 7.34987E-6 5.78564E-6 2.78564E-7 9.23458E-8 

 

Example 2: 

 Consider the first order linear integro differential equation  

 
1

0
)32()()24()4(

2

1
)2(2)2()()(' dttytxSinxSinxSinxCosxyxy 

together with the initial condition 

 

1)0( y  

 

The exact solution is given as: 

)2()( xCosxy   

 

Table 2: Absolute maximum errors for example 2. 

N Standard 

collocation method 

by Power 

series(SCMPS) 

Standard collocation 

method by canonical 

polynomials(SCMCP) 

Perturbed 

collocation 

method by Power 

series(PCMPS) 

Perturbed collocation 

method by canonical 

Polynomials(PCMCP) 

4 7.48300E-2 1.86680E-3 8.83939E-3 9.37068E-4 

6 1.52471E-2 3.16809E-4 6.39096E-3 2.13246E-5 

8 8.76953E-3 1.67845E-5 3.67589E-4 1.03421E-6 

 

Example 3: Consider  the second-order linear integro-differential equation 





 5

0

15

)33()(
3

1
)(9)('' dtty

e
xyxy  

together with the boundary conditions 
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3)1(1)0(  eyandy  

The exact solution is given as  
xexy 3)( 

 
 

Table 3: Absolute maximum errors for example 3. 

N Standard 

Collocation 

Method by Power 

Series (SCMPS) 

Standard Collocation 

Method by Canonical 

Polynomials(SCMCP) 

Perturbed 

Collocation Method 

by Power Series 

(PCMPS) 

Perturbed Collocation 

method by Canonical 

Polynomials(PCMCP) 

4 4.86680E-2 2.02310E-2 1.86433E-3 2.13172E-4 

6 1.16878E-2 5.16037E-3 2.17081E-4 2.05136E-5 

8 8.45834E-3 1.67452E-4 7.45801E-5 1.89561E-7 

   

VIII. DISCUSSION OF RESULTS AND CONCLUSION 
Integro – Differential equations are usually difficulty to solve analytically. In many cases, it is required 

to obtain the approximate solutions. In this work, we proposed perturbed Collocation  by Canonical polynomials 

for  first and second orders linear In tegro Differential Equations and comparison were made with the Standard 

Collocation Method by Power Series and Canonical Polynomials as the the basis functions. 

The comparison certifies that Perturbed Collocation Method gives good results as these are evident in the tables 

of results presented.   
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