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Abstract: - Particle filter is a powerful tool for tracking of targets in any system .The systems which are non-

linear and non Gaussian are commonly occur in practice. This paper investigates various resampling algorithms 

which are available on particle filter .Many tracking methods have been developed but still there are difficulties 

in continuous tracking of the target. This  work aims on the preference of resampling algorithms in tracking .The 

performance of resampling is evaluated in terms of their MSE  value of SIR filter with that of resampling 

schemes. 

 

Index Terms: - SIR Filter, Mean Square Error(MSE), Resampling, Particle filter 

 

I. INTRODUCTION 
 The main strength of the particle filters is that they can be used in filtering even in problems where we 

cannot compute the distribution analytically. It is only needed to be known proportionally. Importance sampling 

is a technique for getting samples from analytical distributions. The idea is to get samples from another 
distribution, like  normal distribution, and then assign the weight according to the real distribution. This 

estimation of the filtering distributions is done in every time instant from the beginning. The weight of the 

particles are calculated as follows:  

ω (i)( k)  = ω (i)( k – 1) (p(y(k)x(i)(k)p(x(k)x(i)(k)) 

   p(x(i)(k)x(i)(k),y(k)) 
 

 where ω i(k) is weight of the particle, x(k) one possible system state sampled from the proposal 

distribution, p(x(k)|xi(k−1)) is its prior probability and y(k) are the observation, p(y(k) | xi(k)) is its likelihood 

and p(xi(k)|xi(k−1), y(k)) is the value of the density function of this particle's proposal distribution. Then the 

weights are normalized so that their sum equals unity. The new weights are: 
            (i)( k)  =      ω (i)( k)   

                 n
j =1 ω

 (i)( k)   
 

 From these equations it can be known, how the prior distribution differs from the real one. It would be 

fine if samples match better with the real distribution. For example regular particle filters such as bootstrap and 

SIR filters use prior distribution for the particle in the prediction stage. If prior distribution is far from the real 

one it is very likely that many particles end up to the low likelihood area and will not be in the resampling stage. 

The main techniques of increasing particles in the resampling stage are increasing the number of the particle 

sample size, prior editing and auxiliary variable. Easiest way to get more particles to the resampling stage is by 

simply increasing proposal sample size technique. If we have more proposals it is likely that more of them will 

get in to high likelihood area .In prior editing, the proposals are computed one by one. If the likelihood of the 

observation for the proposal is high enough than the threshold value, we accept the proposal. Otherwise it is 
rejected. This is continued until we have N accepted proposals, which allows us to get more proposals from the 

particles in high likelihood area and none from the particles in low likelihood area to get more particles to the 

resampling stage which makes the future estimates more accurate. We compare the estimation and prediction 
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performance of the SIR filters with that of resampling schemes based on the following metrics. MSE is defined 

by 

MSE =    
 

 The analysis in this paper is related to the Sample Importance Resampling (SIR) type of PFs. However, 

the analysis is compared to various resampling schemes. First, in Section 2 we provide a brief review of the 

resampling operation. Then in section 3 we focus on the performance and analysis of several techniques that 

have been proposed to implement the resampling step and the summary of our work is outlined in section 4. 

 

II. REVIEW OF RESAMPLING SCHEMES. 
 Besides prediction stage, particle filter also needs resampling stage . In this stage the particles with high 

weights are multiplied and the ones with low weight disappear. Even though the resampling decreases the 

number  of the particles at current time instant, it also makes the future estimates more accurate. That is because 

after resampling ,there are more particles to describe high likelihood area. Resampling can be performed with 

numerous different algorithms like Multinomial resampling, Systematic resampling, Residual resampling, 

Stratified sampling or Deterministic sampling. Algorithms differ in terms of computational complexity, variance 

of the of the number of particles and bias. The above mentioned sampling techniques used for simulations in this 

paper since they are the best unbiased resampling algorithms . These resampling algorithms determine how 

many copies of each weighted particles made to represent unweighted particles at the next point in time. 

 

2.1 SIR Particle Filter  
 The Sampling-Importance Resampling (SIR) is motivated from the bootstrap techniques. Bootstrap 

technique is a collection of computationally intensive methods that are based on resampling from the observed 

data [1], [2], [3]. The intuition of bootstrapping is to evaluate the properties of an estimator through the 

empirical cumulative distribution function (cdf) of the samples instead of the true cdf.. The resampling step is 

aimed to eliminate the samples with small  weights and duplicate the samples with importance weights. The 

steps of SIR proceeds as follows: 

Draw Np random samples  {x(i)}    from proposal distribution q(x); 

Calculate importance weights ѡ (i) ∝ p(x)/q(x) for each sample x(i); 

Normalize the importance weights to obtain (i); 

Resample with replacement N times from the discrete set {x(i)}                                            where the 

probability of resampling from each x(i) is proportional to (i). Resampling usually (but not necessarily) occurs 

between two importance sampling steps. In resampling step, the particles and associated importance weights 

{x(i), (i)} are replaced by the new samples with equal importance weights (i.e.) = (i)=1/Np). Resampling can 

be taken at every step or only taken if regarded necessary.  

• As justified in [4], resampling step plays a critical role in importance sampling since 

(i) if importance weights are unevenly distributed, propagating the “trivial” weights through the dynamic system 

is a waste of computing power; 

(ii) when the importance weights are distorted, resampling can provide chances for selecting “important” 
samples and restore the sampler for the future use, though resampling doesn’t necessarily improve the current 

state estimate because it also introduces extra Monte Carlo variation. 

• Resampling schedule can be deterministic or dynamic [5], [6]. In deterministic framework, resampling is taken 

at every kth time step (usually k = 1). In a dynamic schedule, a sequence of thresholds (that can be constant or 

time-varying) are set up and the variance of the importance weights are monitored; resampling is taken only 

when the variance is above the threshold. 

 

2.2 Multinomial resampling  
[7]: The procedure reads as follows 

 Produce a uniform distribution u ∼ U(0, 1), construct a cdf for importance weights            calculate           s= 

(i) 

 Find si such that si−1 ≤ u < si, the particle with index i is chosen;     Given {x(i), (i) },        for j = 1,   ,Np, 

generate new samples x(j) by duplicating x(i) according to the associated 

(i); 

 Reset ѡ (i) = 1/Np. 
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       Multinomial resampling uniformly generates Np new independent particles from the old particle set. 

Each particle is replicated Ni times (Ni can be zero), namely each x(i) produces Ni particles. 

Note that here    

  E[Ni] = Np  (i), Var[Ni] = Np (i) (1 −  (i)). 

 

2.3. Residual resampling  

 [8]: Liu and Chen [5] suggested a partially deterministic resampling method calculates the number of 

times each particle is replicated  except that it avoids when residual particles need to be resampled. The number 

of replications of a specific particle is determined  by truncating the product of the number of particles and the 

particle weight The    selection procedure is as follows [5]: 

 For each i = 1, ・ ・ ・ ,Np,       retain         ki = [Np ѡ (i)] copies of x(i) n ; 

 Let Nr = Np − k1 − … − kNp , obtain Nr from {x(i)n} with probabilities proportional to Np (i)− ki (i = 

1,…  ,Np); 

 Reset ѡ (i) = 1/Np.  

Residual resampling procedure is computationally cheaper than the conventional SIR and achieves a lower 

sample variance, and it doesnot introduce additional bias. Every particle in residual resampling is replicated. 

 

2.4. Systematic resampling (or Minimum variance sampling) 
This resampling[9] takes the previous method one step further by deterministically linking all the variables 

drawn in the sub-intervals. The procedure proceeds as follows: 

 u ∼ U(0, 1)/Np; j = 1;m = 0;i = 0; 

 do while u < 1  

 if m > u then • u = u + 1/Np; output x(i) 

 else, pick k in {j,… ,Np}  

 i = x(k), m = m + ѡ (i)  

 switch (x(k), ѡ (k)) with (x(j), ѡ (j))  

 j = j + 1, end if, end do  

 The systematic resampling treats the weights as continuous random variables in the interval (0, 1), 

which are randomly ordered. The number of grid points {u+k/Np} in each interval is counted . Every particle is 

replicated and the new particle set is chosen to minimize Var[Ni] = E[(Ni −E[Ni])2]. 

 

2.5 Stratified Sampling  
 [10];The idea of stratified sampling is to distribute the samples evenly (or unevenly according to their 

respective variance) to the sub regions dividing the whole space. Let g (statistics of interest) denote the Monte 

Carlo sample average of a generic function g(x) ∈ RNx , which is attained from importance sampling. Suppose 

the state space is decomposed into two equal, disjoint strata (subvolumes), denoted as a and b, for stratified 

sampling, the total number of Np samples are drawn from two strata separately and we have the stratified mean 

 g = 1/ 2 (g a + g b), and the stratified variance 

Var[g] = Var a[g] + Var b[g] 

                  4 

=     Var a[g] + Var b[g] 

                2NP 

where the second equality uses the facts that Vara[g] =2/Np Vara[g] and  

[Vara[g] = 2/Np Varb[g]. In addition, it can be proved that NpVar[g] = Var[g] 

= NPVar[ģ] +   (Ea[g] + Eb[g])2 
                                  4 

   ≥ NPVar[ģ] 

Hence, the variance of stratified sampling Var g` is never bigger than that of conventional Monte Carlo 

sampling Var[g], whenever Ea[g] ≠ Eb[g]. In general, provided the numbers of simulated samples from 

stratified a and b are Na and Nb ≡ Np−Na, respectively, becomes 

Var[ģ] = ¼    Var a[g] + Var b[g]   

                             Na          NP 

              

the variance is minimized when 

Na/Np =  / (    + ) and the achieved minimum variance is 

   Var[ģ]min = (    + )2 

                            4Na                         



American Journal of Engineering Research (AJER) 2013 
 

 
w w w . a j e r . o r g  

 
Page 231 

Table –I shows different popular montecarlo methods. 

Table-I 

Author 
Sampling 

method 
Applied 

Rubin SIR On/off line 

- Stratified 

sampling 

On/off line 

Gordon Bootstrap Online 

- QMC On/offline 

Bolic RSR On/offline 

 

III. UNIVARIATE NON-STATIONARY GROWTH MODEL AND RESULTS 
 To illustrate some of the advantages of SIR Particle Filter with various resampling schemes mentioned 

in this paper.,Let us now consider an example[11], in which we estimate a model called Univariate 

Nonstationary Growth Model (UNGM), which is previously used as benchmark .what makes this model 

particularly interesting in this case is that its highly nonlinear and bimodal, so it is really challenging for 

traditional filtering techniques. The dynamic state space model for UNGM can be written as 

 xn = αxn-1 +   xn – 1    + cos(1.2(n)) +wn 

                            1+x
2

n-1 

 Yn = x2
n / 20 + vn,                n = 1,………,N 

 

 Table-II shows the comparison of root mean square error(RMSE) of SIR particle filter with that of The 

cosine term in the state transition equation simulates the effect of time-varying noise. From the above equation 

we choose α=0.5,β=25,γ=8.For N=100 particles ,the  mean square error(MSE) curves of the estimated results of 

SIR particle filter is compared with different resampling schemes are shown in Figures and Table below.  

              
Table-II 

Resampling Schemes ob fob 

SIR 2.839 2.132 

Multinomial -1.535 0.3845 

Residual -0.712 0.5523 

Deterministic 0.802 0.594 

Systematic 0.196 0.647 

*ob- observation ,*fob-filtered observation 
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IV. CONCLUSION 
 The purpose of this work is to examine the application of particle filters in radar systems that use 

different resampling schemes. The performance of the algorithms were investigated in Matlab simulation . In 

practical applications of sequential Monte Carlo methods, residual, stratified, multinominal and systematic 

resampling are generally found to provide comparable results. Due to lack of complete theoretical analysis of its 
behavior, systematic resampling is often preferred because it is the easiest method to implement. From a 

theoretical point of view however only the residual and stratified resampling methods (as well as the 

combination of both) may be shown to dominate the basic multinomial resampling approach, in the sense of 

having lower covariance for all configurations of the weights. 
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