
American Journal of Engineering Research (AJER) 2013 
 

 
w w w . a j e r . o r g 

 

Page 87 

American Journal of Engineering Research (AJER) 

e-ISSN : 2320-0847  p-ISSN : 2320-0936 

Volume-02, Issue-09, pp-87-99 

www.ajer.org 

 

Research Paper                                                                                  Open Access 

 

Analysis of Order of Singularity at a Vertex in 3D Transversely 

Isotropic Piezoelectric Single-Step Bonded Joints 
 

Md. Shahidul Islam, Md. Golam Kader,  Md. Kamal Uddin, and Mohiuddin 

Ahmed  
Dept. of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, Bangladesh 

 

Abstract: - The stress singularity field occurs at a vertex on an interface due to a discontinuity of materials. 

The distribution of stress singularity field near the vertex of bonded joints is very important to maintain the 

reliability of intelligent materials. Piezoelectric materials are being widely used in the electronics industry, due 

to their high piezoelectric performance. Piezoelectric material, due to its characteristic direct-converse 

piezoelectric effect, has naturally received considerable attentions. In this paper, order of singularity at vertex in 

3D transversely isotropic piezoelectric single-step bonded joints is analyzed. Eigen analysis based on FEM is 

used for stress singularity field analysis of piezoelectric bonded joints. The Eigen equation is used for 

calculating the order of stress singularity, and the angular function of elastic displacement, electric potential, 

stress and electric displacement. The numerical result shows that the angular functions have large value near the 

interface edge than the inner portion of the joint. From the numerical result, it was observed that the possibility 

of debonding at the interface edge of the piezoelectric bonded joints, due to the higher stress concentration at 

the free edge. 
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I. INTRODUCTION 
 In recent years, intelligent or smart structures and systems have become an emerging new research 

area. Piezoelectric material, due to its characteristic direct-converse piezoelectric effect, has naturally received 

considerable attentions [1,2]. Piezoelectric materials have been extensively used as transducers and sensors due 

to their intrinsic direct and converse piezoelectric effects that take place between electric fields and mechanical 
deformation, and they are playing a key role as active components in many fields of engineering and technology 

such as electronics, laser, microwave infrared, navigation and biology [3]. For example, piezoelectric materials 

are acting as very important functional components in sonar projectors, fluid monitors, pulse generators and 

surface acoustic wave devices. 

 Mechanical stress occurs in piezoelectric material for any electric input. The stress concentrations 

caused by mechanical or electric loads may lead to crack initiation and extension, and sometimes the stress 

concentrations may be high enough to fracture the material parts. In the case of multilayer piezoelectric stacks, 

the electrodes that terminate inside the material body are a source of electric field, which can result in high 

stress concentrations. Reliable service lifetime predictions of piezoelectric components demand a complete 

understanding of the debonding processes of these materials. Industrial products such as electronic devices and 

heat endurance parts are composed of dissimilar materials. A mismatch of material properties causes a failure at 

the free edge of joint, because a stress concentration occurs along the free edge of interface especially at the 
vertex of bonded joint [4]. 

 Sosa has suggested a general method of solving plane problems of piezoelectric media with     defects 

[5]. Wang has obtained the general solutions of governing equations to three-dimensional axisymmetric 

problems in transversely isotropic piezoelectric media [6]. Williams used the mathematical procedure for 

analyzing stress singularities in infinite wedges and successfully applying to the analysis of stress distribution at 

the vicinity of a crack tip [7,8]. Zak and Williams used Eigen functions for analyzing stress singularity field at a 

crack tip perpendicular to a bimaterial interface [9]. They found that a real part of Eigen value is within the 
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range of 0 to 1, and expressed a relationship between stress distribution and the order of stress singularity at the 

crack tip. Aksentian determined Eigen values and Eigen vectors at the singular point in plane intersecting a free 

edge of the interface in three dimensional dissimilar joints [10]. 

 Hartranft and Sih introduced the Eigen function expansions method in order to study the purely elastic 

3D problem [11]. Bazent and Estenssoro, and Yamada and Okumura developed a finite element analysis for 

solving Eigen value equation to determine directly the order of stress singularity and the angular variation of the 

stress and displacement fields [12,13]. This Eigen analysis was used to evaluate the order of singularity at a 

point where a crack meets a free surface in an isotropic material.  Then, this Eigen analysis based on a finite 

element was adapted by Pageau, Joseph and Biggers to use for analyzing the inplane deformation of wedges and 
junctions composed of anisotropic materials [14]. The stress and displacement fields were obtained from Eigen 

formulation for real and complex orders of stress singularity. Pageau and Biggers applied to analyze the joints 

including fully bonded multi-material junctions intersecting a free edge as well as materials containing crack 

intersecting a free edge [15]. This study showed that the order of singularity in the three-dimensional stress field 

could be accurately determined with a relatively small number of elements. Pageau and Biggers determined the 

order of stress singularity and the angular variation of the displacement and the stress fields around the singular 

points in plane intersecting a wedge front in the three-dimensional anisotropic material structures using the two 

dimensional displacement formulation under a plane strain assumption [16].  

 The effects of order of singularity near the vertex of 3D transversely isotropic piezoelectric bonded 

joints from a continuum mechanics point of view are not clear until now. Therefore, the effect of stress 

singularity field at a vertex on an interface of transversely isotropic piezoelectric single-step bonded joints is 

analyzed in this present study. 
 

II. THE GOVERNING EQUATION 
In the absence of body forces and free charges, the equilibrium equations of piezoelectric materials are 

expressed as follows [17]: 

                                                                  0,0 ,,  iijij d                                            (1) 

The constitutive relations are shown as follows:                                         

                                                  kikkliklikkijklijklij EedEec   ,                                       (2) 

The elastic strain-displacement and electric field-potential relations are presented as follows: 

                                                        iijiijij Euu ,,, ,
2

1
                                      (3) 

where i, j, k, l = 1, 2, 3 and ij, di, ij, ui, Ei, and  are the component of stress, electric displacement, strain, 
elastic displacement, eclectic field and electric potential respectively. Eq. (2) expressed in terms of elastic 

stiffness constant cijkl (measured in a constant electric field), the piezoelectric constant eikl and electric 

permittivity (dielectric constant) ik (measured at a constant strain). 
For transversely isotropic material, taking z-axis parallel to the poling axis of the material, by convention, the 

constructive relation is expressed in the following form. 

                                                            EedEec
T

  ,                                         (4) 

where   and  are the stress and strain which are the mechanical field variables,  d  and  E are the 

electric displacement and electric field respectively,  c is the elastic constant, and  e   and     are  the 

piezoelectric and electric permittivity (dielectric) constant respectively.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Element geometry and natural co-ordinates at a free edge singular point 
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 Fig. 1 represents the geometry of a typical case where a singular stress state occurs at the point o. The 

region surrounding the singular point is divided into a number of quadratic pyramidal elements with a summit o, 

with each element being located in spherical coordinates r, , and  by its nodes 1 to 8. A point P in the element 
can be located using the singular transformation by the following relations. 

 

                                  r  ro
1

2











1
p

       or,       
r

ro


1

2











1
p

                                      (5) 

 

                                                  Hii
i1

8

         and          Hii
i1

8

                                                  (6) 

where p Eigen value,  = r/ro, r the distance from the singular point, and Hi indicates the shape function, which 
is written as; 

H1  
1

4
1  1   1           H2 

1

2
1  12  

 

H3  
1

4
1  1   1        H4 

1

2
12  1  

 

H5 
1

4
1  1   1            H6 

1

2
1  12  

 

                                  H7 
1

4
1  1   1            H8 

1

2
12  1                            (7) 

 and  are the nodal values of the angular coordinates and , , and  are natural coordinates of the element 
whose ranges are shown in Fig.1.  

The elastic displacement and electric potential field in the element is expressed as follows: 
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8
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
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
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
          (8) 

 

where uo   and u   represents the elastic displacement vector of the vertex o and the point P respectively, and 

u i    represents the elastic displacement vector of the node i (i = 1, 2, …, 8). Similarly  o   and    represents 

the electric potential vector of the vertex o and the point P respectively, and  i    represents the electric 

potential vector of the node i (i = 1, 2, ……, 8). In order to simplify the notation, the following equation can be 

defined. 

 

         u  u uo ,           ui  ui uo , and        o ,           i  i o          (9) 

Using the Eq. (5), Eq. (8) can be expressed as follows: 

 

                            uk  
p H iuki

i1

8










 k  r,, , and        p H ii

i1

8










                      (10) 

The Jacobean matrix relating the spherical coordinates to the natural coordinates is given below: 
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Eq. (11) shows that there is no dependence between the radial coordinate and the angular coordinate. From Eq. 

(11) a sub-matrix is extracted as follows: 
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                                   (12) 

The strain and electric potential equation is obtained from Eq. (5) Eq. (7) and Eq. (10), Eq. (12) by using the 
chain rule of differentiation.                                         

The strain in a spherical coordinate system: 
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The electric potential in a spherical coordinate system:  
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The superscript -1 on the matrix [J1] represents the inverse matrix. Eq. (13) and Eq. (14) now can be 

summarized as follows: 
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




























, and     

Bib 

 0               0                0               0

H i              A1                0               0

H i         H i cot         A2               0

A1            H i                0               0

A2               0             H i               0

 0              A2      A1  H i cot      0

 0               0                0               0

 0               0                0             A1

 0               0                0             A2



































            (16) 

Also A1 and A2 are written as; 

 

A1  J1 1,1  
1 H i











 J1 1,2  

1 Hi











 , andA2 

J1 2,1  
1

sin

H i













J1 2,2  
1

sin

H i











   (17) 

Eq. (15)  Eq. (17) represents the strains, and therefore the stresses are proportional to  
p-1

. The case where      
0 < p < 1 defines a singular stress state at the vertex of the element. The element depicted in Fig.1 must satisfy 

the principle of virtual work in order to be in equilibrium, that is 
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                                                        ij
ij

d


 Ti
ui

d


 fi
ui

d


                                            (18) 

Where Ti
* represents the traction at the outer boundary. This equation can be transformed into a matrix form 

with the help of Eq. (5) Eq. (7) as follows: 
 

ro
22

1

1


1

1


1

1

  * 
T

   sin J ddd  ro
2  u 

T

H 
T

 rr

 r

 r

dr











































sin J1 dd
1

1


1

1

            (19) 

 

where J  and J1  represent the determinant of the matrices [J] and [J1] respectively and  * 
T

is 

represented by the following equation. 

 

                     * 
T

  rr                   r       r            dr      d      d                          (20) 

The relation between stress and electric displacement with strain and electric field is as follows: 
 

                                                                  *  D  *                                                                               (21) 

where [D] represents the material constants matrix. 

 

The Eigen equation was formulated for determining the order of stress singularity as follows [14]: 

 

                                                     p2
A  p B  C   U  0                                                        (22) 

where 

U 

ur

u

u



























, and 

 

A  ka ksa  
S

 ,     B  kb ksb  
S

 ,     C  kc ksc  
S

  

In Eq. (22), p represents the characteristic root, which is related to the order of singularity, , as  = 1-p. [A], 
[B] and [C] are matrices composed of material properties, and {U} represents the elastic displacement and 

electric potential vector.  

 

ka  Ba 
T
D 

1

1


1

1

 Ba sin J1 dd  

 

       kb  Ba 
T
D  Bb  Bb 

T
D  Ba  

1

1


1

1

 sin J1 dd  

 

kc  Bb 
T
D 

1

1


1

1

 Bb sin J1 dd  

ksa  2 H 
T
SD 

1

1


1

1

 Ba sin J1 dd  
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ksb  2 H 
T
SD  Bb  H 

T
SD  Ba  

1

1


1

1

 sin J1 dd  

 

ksc  H 
T
SD 

1

1


1

1

 Bb sin J1 dd  

Eq. (22) now expressed as follows 

 

                                                         p B  C   U  p2
A  U                             (23) 

 

Finally, letting V  p U , the characteristic equation can be transformed into the standard Eigen problem. 

 

                                     
 A 

1
B              A 

1
C 

       I                           0 















V 

U 












 p

V 

U 












                (24) 

 

III. RESULTS AND DISCUSSIONS 
Fig. 2 represents a model for 3D two-phase transversely isotropic piezoelectric dissimilar joints used in the 
present analysis. The stress singularity line and singularity point on interface of the joint are shown in the 

figure. The angle  is equal to 180º and the angle  for upper material and lower material are 90º and 360º 
respectively. In Eigen analysis, a mesh division for the joint is needed for the analysis. The mesh developed on 

-  plane is shown in Fig. 3, where the surface of a unit sphere is divided into  = 10º10º. 
 

 

 

 

 

 

      
      

 

 

 

 

 

 

 

Figure 2: Singular point of 3D piezoelectric single-step bonded joint in x, y, z plane 

 

 
      

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: A mesh on developed -  plane 
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Table 1. Material properties of piezoelectric materials 

 

 In this analysis, first of all, Eigen values and Eigen vectors are investigated by Eigen analysis when 

two different materials are bonded. The order of singularity, at the vertex and at a point on the singularity line 
for the model shown in Fig. 2 is calculated. Solving Eigen equation yields many roots p and Eigen vectors 

corresponding to each Eigen value are obtained. However, if the root p is within the range of 0 < p < 1, this fact 

indicates that the stress field has singularity. The values of the order of singularity at the singularity corner and 

line for transversely isotropic piezoelectric bonded material are shown in Table 2.  

 

Table 2. Order of singularity for Resin and PZT-4 

 

 
 

 

 

 

The angular functions of elastic displacement and electric potential equation are expressed by the following 

equitation. 

 

          u j r, ,  bj ,  r1
, and      r, ,   q ,  r1

  (j = r, , )                    (25) 

 By differentiating the above equations, get the angular function of strain and electric field equation 

respectively. The stress and electric displacement distribution equations in the stress singularity region can be 

expressed as follows. 

  

           ij r, ,  Kijr
 fij ,  , and     di r, ,   Fir

li ,       (i, j = r, , )         (26) 

Where r represents the distance from the stress singular point,  bj(, ) the angular function of elastic 

displacement, q(, ) the angular function of electric potential, fij(, ) the angular function of stress 

distribution, li(, )the angular function of electric displacement, Kij the intensity of singularity, Fi the intensity 
of electric field, and λ the order of stress singularity. Angular functions of stress components obtained from 

Eigen analysis in Eq. (22) are examined. 

 

Material 
Elastic Constant, 1010 N/m2 Piezoelectric Constant, 

C/m2 

Dielectric Constant, 

10-10 C/Vm 

c11 c12 c13 c33 c44 e31 e33 e15 11 33 

Resin 5.56 3.41 3.41 5.56 1.08 0.0 0.0 0.0 37.9 37.9 

PZT-4 13.9 7.78 7.43 11.3 2.56 -6.98 13.8 13.4 60.0 54.7 

Material Order of singularity 

PZT-4  and  

Resin  

 1 2 3 4 

line 0.3494 0.0895 0.0264 ---- 

vertex 0.4304 0.0291 0.0081 0.0023 
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Fig. 4 shows the distribution of angular function of elastic displacement and electric potential at      1 = 0.4304. 
Plots (a), (b) and (c) represent the elastic displacement and plot (d) represent the electric potential.  All figures 

are plotted by using the Eq. (25). All of these plots show that the angular functions are continuous at the 

interface of the bonded joint. The interface of the joint is at  = 90
o
. Resin is exist in the region of  = 0 to 

360,  = 90 to 180 and PZT-4 is exist in the region of  = 0 to 90,  = 0 to 90. The distribution of angular 

function of stress against  and  for  = 0.4304 is plotted by using the Eq. (26) and the graphs are shown in the 
figure below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Distribution of fr against and for Resin & PZT-4 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Distribution of f against and for Resin & PZT-4 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Distribution of f against and for Resin & PZT-4 
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 Fig. 57 show the 3D distribution of angular function of stress in - plane for  = 0.4304. All these 
graphs show the angular function of stress have the larger value at the interface edge of the bonded joint. The 

distribution of angular function of electric displacement against and for  = 0.4304 is plotted by using the  
Eq. (26) and the graphs are shown in the figure below: 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 8: Distribution of lr against and for Resin & PZT-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Distribution of l against and for Resin & PZT-4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Distribution of l against and for Resin & PZT-4 
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Fig. 810 show the 3D distribution of angular function of electric displacement in- plane for          = 0.4304. 
All these figures show the angular function of electric displacement is continuous at the interface of the bonded 

joint. These figures also show that the larger value of angular function of electric displacement near the 

interface edge than the inner portion of the single-step bonded joints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure11: Distribution of normalized fij against at = 90 for Resin & PZT-4 

 

 The normalized angular function of stress is shown in Fig. 11 for  = 0.4304. The angular function of 

stress against the angle at = 90 is plotted. The stress singularity lines are at the free edge of the material 
joint. The figure shows that the value of angular function of stress increases rapidly near the interface edge than 

the inner portion of the joints. The values of fr and f is normalized by their value at  = 45 and f  is 

normalized by their value at  = 2.5. Near interface edge of the joint has the largest value of angular function 
of stress. So there is a possibility to debond and delamination occurs near the interface edge of the single-step 

bonded joint.  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Figure12: Distribution of normalized li against at  = 90o for Resin & PZT-4 
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3.5. The angular function of electric displacement has the larger value near the interface edge than the inner 
portion of the joint. So there is another possibility to debond and delamination occurs near the interface edge of 

the single-step bonded joint. 
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a finite element method. From the numerical results, the following conclusions can be drawn for the 

piezoelectric single-step bonded joints. 

(a) The order of singularity at the singularity corner is larger than that of the line. 

(b) Larger value of the angular function occurs at the interface edge in the material joint than the inner portion 

of the joint. 

(c) It is suggested that delamination of the interface may occur at the interface edge of the piezoelectric material 

joints. 
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Notations 

ij         Stress, N/m2 

ij            Strain, m/m 
di          Electric displacement, C/m2  

Ei           Electric field, N/C 

cijkl         Elastic constant, N/m2 

eilkl (ekij) Piezoelectric cnstant, C/m2 

ik Electric permittivity, C2/Nm2 

H Interpolation function 

p Characteristic root 

 Order of singularity 

ui Elastic displacement 

 Electric potential 
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