
American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 76

American Journal of Engineering Research (AJER)

e-ISSN : 2320-0847 p-ISSN : 2320-0936

Volume-02, Issue-09, pp-76-80

www.ajer.org

Research Paper Open Access

Client-Side Validation and Verification of PHP Dynamic

Websites

K.Sowjanya,

N. Deepika, P.V.S.Srinivas

1PG Scholar, Department of Computer Science and Engineering, TKR College of Engineering and Technology

Hyderabad, A.P-500 097, India
2
Assistant Professor, Department of Computer Science and Engineering, TKR College of Engineering and

Technology Hyderabad, A.P-500 097, India
3Professor& Head, Department of Computer Science and Engineering TKR College of Engineering and

Technology Hyderabad, A.P-500 097, India

Abstract: In contemporary, populace are interested in fault-localization techniques which are based on

statistical analysis of program statements executed by going through and unexpected executions. Here we

explore three fault localization algorithms which are referred as Tarantula, Ochiai and Jaccard can be evaluated

to localize faults perfectly in web applications which are developed in PHP. These algorithms uses source

mapping for conditional and function-call statements. We developed different fault localization techniques

and test-generation cases in Apollo, and explored them on many open-source PHP apps. Then the

ultimate output of tests are that Ochiai algorithm contains all our enhancements which localizes more than

80% of all faults in executed statements, compared to unenhanced Ochiai algorithm where it gives only
quarter percent amount. And also we checked that , the strategies which are used for test generation taken

under part are efficient to know the algorithm perfectness. And also these algorithms are cost efficient.

Moreover, normally, a straight forward concept which depends upon similarities of path-constraint gets

high range perfectness in less than 10 test generation, when compared to other strategies where we have to do

more like almost half century.

Keywords: - Fault localization, statistical debugging, program analysis, web applications, PHP.

I. INTRODUCTION
 Web application provides a user friendly interface to the users. Proper functionality and security

testing should be done on the web application, prior to the web application release. The scope of the paper is to

identify bugs in the usage of web apps in the network with the help of dynamic test generation. Web

applications can be developed using server side programming languages (JSP, PHP, ASP etc,) or client side
programming languages or with static web pages (HTML) and with combination of the languages. In the

dynamic web sites, developed with server side programming languages accepts inputs from the remote users [9].

The remote user can pass web application expected inputs or can pass malicious inputs. If malicious inputs are

passed to the web application, the behavior of the web application may change. The web application may crash

at some instance. The web application response may be an unexpected that causes the browser to crash.

The web application should be thoroughly tested for the functionality and in the security aspect. The draw

backs in existing system are that it approaches are for testing the webpage validation. The existing

approaches cannot identify the dynamic pages. The approaches cannot test the web application with the

dynamic inputs. These cannot identify the dynamic pages and cannot generate test cases dynamically [3].

 It identifies the expected response using state model maintenance. The state model is the request

verves response combinations in the normal scenario. Should identify the security flaws of the web
application. The proposed system is only for the web application developed with the server side scripting

language PHP. Bug report contains a failure, a set of path constraints exposing the generates a report of a set of

bugs. Each failure and a set of inputs exposing the failure. The path constraint minimization algorithm. The

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 77

method intersects returns the set of conjuncts that are present in all given path constraints and the method

shortest returns the path constraint with fewest conjuncts.

 In detail EB apps are developed based upon various languages of programming, such as Java- Script

which was on interface of user, and PHP on mostly server side in embedded Structured Query Language (SQL)

commands on the server side[7]. Such applications evaluate output in structured format with dynamic HTML
pages those were helped in the execution of additional scripts. As with any program, programmers make

mistakes and introduce faults. In the domain of web applications, some faults manifest themselves as web-

application crashes and as malformed HTML pages that are not displayed properly in a web browser .

While malformed HTML failures may seem trivial, and indeed many of them are at worst minor

annoyances, they have on occasion been known to create serious vulnerabilities, e.g., via denial-of-

service attacks.

 Furthermore, such failures in the HTML code may be difficult to localize because HTML code is often

dynamically generated by server side code written, for example, in PHP or Java and so, when a failure is

detected, there really is no HTML file or line number to point the developer to. In this paper, we present

Apollo, the first fully automatic tool that efficiently finds and localizes malformed HTML and execution

failures in web applications that execute PHP code on the server side [6].

II. ARCHITECTURE
 In particular, 1) it integrates an HTML validator to check for failures that manifest themselves by the

generation of malformed HTML, 2) it automatically simulates interactive user input, and 3) it keeps track of the

interactive session state that is shared between multiple PHP scripts[3]. However, our previous work focused

exclusively on finding failures by identifying inputs that cause an application to crash or produce

malformed HTML. We did not address the problem of pinpointing the specific web application instructions

that cause these failures, and fixing the underlying faults can be very difficult and time consuming if no

information is available about where they are located.

Fig.1 Fault localization technique

 This paper addresses the problem of determining where in the source code changes need to be made in
order to fix the detected failures. This task is commonly referred to as fault localization, and has been studied

extensively in the literature [8]. The fault- localization algorithms explored in this paper attempt to predict the

location of a fault based on a statistical analysis of the correlation between passing and failing tests and the

program constructs executed by these tests. In particular, we investigate variations on three popular statistical

fault-localization algorithms, known as Tarantula Ochiai and Jaccard. These algorithms predict the location of a

fault by computing, for each statement, the percentages of passing and failing tests that execute that statement

[7]. From this, a suspiciousness rating is computed for each executed statement. Programmers are

encouraged to examine the executed statements in order of decreasing suspiciousness.

 The effectiveness of a fault localization technique can be measured by determining how many

statements need to be inspected, on average, until the fault is found. Our work differs from most previous

research on fault localization in that it does not assume the existence of a test suite with passing and failing test
cases. Instead, we rely on combined concrete and symbolic execution to generate passing and failing runs. This

paper advances the state of the art in fault localization in two ways. First, we present enhancements to previous

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 78

statistical fault- localization techniques that make them significantly more effective at localizing the faults

responsible for execution failures, and for the generation of malformed HTML pages in PHP web applications

[10]. These enhancements include: The use of an extended domain. We apply existing statistical fault-

localization techniques on an extended domain of pairs, in which the runtime value serves to differentiate

occurrences of the statement at runtime. Applying this technique to conditional statements helps fault
localization with the identification of errors of omission such as missing branches, and applying the

technique to function calls enables us to differentiate normal return values from values such as null that are

often correlated with erroneous [4]. The use of a source mapping [9]. We modified the PHP interpreter to

maintain a source mapping that records t h e statement in the PHP application that produced each fragment of

output at runtime; thus, it is a map from print statements to regions of the HTML file. This mapping when

combined with the report of the HTML validator, which indicates the parts of the HTML output that are

incorrect provides an additional source of information about possible fault locations, and is used to fine-tune

the suspiciousness ratings of existing fault- localization techniques[5]. A second main research topic

explored in this paper has to do with the fact that existing fault-localization approaches assume the existence of

a test suite.

To summarize, the contributions of this paper are as follows:
1. We present two mechanisms, the use of an extended domain and the use of a source mapping, that

significantly enhance the effectiveness of existing fault-localization techniques such as Tarantula, Ochiai,

and Jaccard.

2. To evaluate these fault-localization techniques in Apollo, we implemented each of the fault localization

techniques; localized 115 randomly selected faults in five PHP applications, and compared the technique„s

effectiveness. Our findings show that, using our best technique, an enhanced version of Ochiai, 87.8

percent of the faults are localized to within 1 percent of all executed statements, compared to only 37.4

percent for the unenhanced Ochiai algorithm [1]. Similar improvements were obtained for enhanced

versions of the Jaccard and Tarantula algorithms.

3. We present a family of directed test-generation techniques, based on combined concrete and symbolic

execution that are capable of generating small test suites with high fault- localization effectiveness. These
techniques overcome the important limitation of many previous fault-localization methods that a test suite

be available upfront [10].

4. To evaluate directed test generation, we implemented these directed test-generation techniques in Apollo.

Our evaluation shows that a directed technique based on path-constraint similarity reduces test suite size

by 86.1 percent and generation time by 88.6 percent when compared to an existing undirected test-

generation technique, without compromising fault-localization effectiveness [1].

 These findings show that automated techniques for fault localization, which were previously primarily

evaluated on programs with artificially seeded faults, are effective at localizing real faults in open-source

PHP web applications.

The remainder of this paper is organized as follows:

 Section 2 reviews the PHP language and the kinds of failures that may arise in PHP programs.
Section 3 reviews the Tarantula, Ochiai, and Jaccard fault-localization algorithms and presents our extensions

to these algorithms [6]. In Section 4, we present algorithms for test generation that are directed by similarity

criteria toward the generation of test suites with high fault-localization effectiveness. Section 5 presents an

implementation of our work in the context of the Apollo tool. Section 6 presents an evaluation of our fault

localization and test-generation algorithms on a set of open source PHP programs.

Fault localization

 In this section, we first review the basic fault-localization algorithms we implemented and extended:

Tarantula, Jaccard, and Ochiai [4]. We then present an alternative technique that is based on source mapping

and positional information obtained from an oracle. Next, a technique is presented that combines the former

with the latter. Finally, we discuss how the use of an extended domain for conditional and return-value
expressions can help improve the basic algorithm„s effectiveness [2].

III. IMPLEMENTATION
Step 1: state manager

The module keeps track of all the pages to be visited.

If finds the absolute urls that are possible on the site under test.

It maintains the state of the url.

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 79

Step 2: Shadow Interpreter

It executes the server side program for testing

It interprets each url that are to be processed.

It executes programs with, without, negative values, and large values as input arguments

It gathers the web pages produced for each interpretation.

Step 3: UI Option analyser

It gathers all the input variables that are used in each server side program.

It finds the arguments names such as “name”,”id”etc,.

It works based on syntactic analysis on the program.

Step 4: symbolic driver

It consists of all the syntactic symbols and their states for identifying the input arguments.

For example:

 GET_[„ -> symbol

 „] -> symbol

Step 5: constraint solver

It arranges the absolute urls with all possible combinations.

 Eg: login.php has id, pwd as input args.

URL 1: http://www.xyz.com?id=

URL 2: http://www.xyz.com?id=asdf&pwd=123

Step 6: input value generator

Based on the input argument type, an in teger can have negative, positive values.

It produces and assigns null values for the input arguments.

It produces large values for integer, float, char etc,

Step 7: bug finder

The outputs of shadow interpreter are a web page.

The page is validated against W3C validator.

 If W3C validator confirms with any bug, the URL and the page is considered as reproducible scenario.

Step8: path constraint minimization

It tries to eliminate the unnecessary urls that are causing same bug.

The minimized urls set and its value causes the reduced and optimal bug report.

IV. RELATED WORK

 This section reviews the literature on fault localization, focusing primarily on fault localization

techniques that predict the location of faults based on the analysis of data from multiple tests or

executions. In addition, we discuss research that explores the impact of test-suite composition on fault-

localization effectiveness.

Fault Localization

In previous works these fault localization was used for slicing purpose in programming. As inverse here are the

two people who used these fault localization for the sake of dicing which was used for combining those slices

of programming [2]. Those scientists are Lyle and Weiser. The way of these fault localization works in order to
find these faults in information. For example if we take A and B values if we get perfect result for a and some

wrong for B then we have to check with respect B variation.[5] These variations are later invented by

Pan and Spafford and Agrawal et al.

Trace comparisons

 Renieris and Reiss use set-union, set-intersection, and nearest neighbor methods for faul t

local izat ion ; these a ll wor k by comparing execution traces of passing and failing program runs. Set-union.

It computes the bunch of each and every statement that which are executed by sending test cases and cutoffs

when it was executed by failing test case these from bunch of statements. The set which was the outcome of

http://www.xyz.com/?id
http://www.xyz.com/?id=asdf&pwd=123

American Journal of Engineering Research (AJER) 2013

w w w . a j e r . o r g

Page 80

failing test includes statements which are suspicious. This is the where programmer interacts first.

 Here faulty statement was not included an report, based upon System Dependence Graph (SDG)

scientists Renieris and Reiss proposed a ranking technique. Here the ranking technique involves additional

statements [8]. These statements are set of things based upon distance and Set-intersection where the previous

reports are edge touched them. It discovers the statements which are went successfully through all test cases,
not only by single case failing test, and address errors of omission testing attempts don„t under take or

won„t consider failing test case in the execution of statement. It chooses the passing test case that contains

feature of execution spectrum that has common similarities with the failing test case distance criteria. In

the event the faulty statement does not contain in the report, based upon System Dependence Graph scientists

Reiner„s and Reiss proposed a ranking technique. Here the ranking technique involves additional statements

[11]. These statements are set of things based upon distance. Nearest Neighbor was evaluated on the Siemens

suite, and was found to be superior to the set-union and set intersection techniques.

V. CONCLUSION
 Until now, statistical fault-localization techniques that analyze execution data from multiple tests

have been applied primarily in the context of traditional imperative programming languages such as C and

Java. In this paper, we have shown how such fault localization techniques can be made effective in the

domain of PHP web applications. We have presented two enhancements to the existing Tarantula, Jaccard,

and Ochiai fault-localization techniques that greatly increase their effectiveness:

 The use of an extended domain of pairs for conditional statements and function calls. The use of source

mapping that correlates statements in the PHP application with the fragments of output that they produce at

runtime. The former helps with the localization of certain common kinds of failures such as missing

branches in conditional statements and the return of unexpected values by functions due to corner cases

that are not handled properly[11]. The latter increases the precision of fault localization by leveraging the

fact that PHP applications are expected to produce syntactically valid HTML output, and that the location of

errors in these generated pages can often be determined quite precisely.
 Briefly the existing systems cannot analyze the dynamic pages, and cannot generate dynamic test

cases. The proposed approach can generate dynamic test case for the dynamic web pages. The proposed

approach can generate test cases for finding the security bugs.

REFERENCES
[1] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, “An Evaluation of Similarity Coefficients for Software

Fault Localization,”Proc. 12th Pacific Rim Int„l Symp. Dependable Computing, pp. 39-46, 2006.
[2] R. Abreu, P. Zoeteweij, and A.J. van Gemund, “On the Accuracy of Spectrum-Based Fault

Localization,” Proc. Testing: Academic and Industry Conf. Practice and Research Techniques, pp. 89-

98, Sept. 2007.

[3] R. Abreu, P. Zoeteweij, and A.J.C. van Gemund, “An Evaluation of Similarity Coefficients for Software

Fault Localization,” Proc. 12th Pacific Rim Int„l Symp. Dependable Computing, pp. 39-46, 2006.

[4] H. Agrawal, J.R. Horgan, S. London, and W.E. Wong,”Fault Localization Using Execution Slices

and Dataflow Tests,”Proc. Int„l Symp. Software Reliability Eng., pp. 143-151, 1995.

[5] S. Artzi, J. Dolby, S. Jensen, A. Møller, and F. Tip, “A Framework for Automated Testing of JavaScript
Web Applications,” Proc. Int„l Conf. Software Eng., 2011.

[6] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Directed Test Generation for Effective Fault Localization,”

Proc. 19th Int„l Symp. Software Testing and Analysis, pp. 49-60, 2010.

[7] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Practical Fault Localization for Dynamic Web

Applications,” Proc. 32nd ACM/ IEEE Int„l Conf. Software Eng., vol. 1, pp. 265-274, 2010.

[8] S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M.D. Ernst, “Finding Bugs in Dynamic

Web Applications,” Proc. Int„l Symp. Software Testing and Analysis, pp. 261-272, 2008.

 [9] S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M.D. Ernst,”Finding Bugs in Web

Applications Using Dynamic Test Generation and Explicit State Model Checking,”IEEE Trans.

Software Eng., vol. 36, no. 4 pp. 474-494, July/Aug. 2010.

[10] P. Arumuga Nainar, T. Chen, J. Rosin and B. Liblit, “Statistical Debugging Using Compound Boolean
Predicates,”Proc. Int„l Symp. Software Testing and Analysis, S. Elbaum, ed., July 2007.

[11] P. Arumuga Nainar and B. Liblit, ―Adaptive Bug Isolation,‖ Proc. 32nd ACM/IEEE Int„l

Conf. Software Eng., pp. 255-264, 2010.

