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Abstract: - Economists, social scientists and engineers provide insights into the drivers of anthropogenic 

climate change and the options for adaptation and mitigation, and yet other scientists, including geographers and 

biologists, study the impacts of climate change. This project concentrates mainly on the discharge from the 

Shiroro River. A stochastic approach is presented for modeling a time series by an Autoregressive Moving 

Average model (ARMA). The development and use of a stochastic stream flow model involves some basic steps 

such as obtain stream flow record and other information, Selecting models that best describes the marginal 

probability distribution of flows. The flow discharge of about 22 years (1990-2011) was gotten from the 

Meteorological Station at Shiroro and analyzed with three different models namely; Autoregressive (AR) model, 

Autoregressive Moving Average (ARMA) model and Autoregressive Integrated Moving Average (ARIMA) 
model. The initial model identification is done by using the autocorrelation function (ACF) and partial 

autocorrelation function (PACF). Based on the model analysis and evaluations, proper predictions for the 

effective usage of the flow from the river for farming activities and generation of power for both industrial and 

domestic us were made. It also highlights some recommendations to be made to utilize the possible potentials of 

the river effectively. 
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I. INTRODUCTION 
There had not been serious attention given to the depleting ozone layer, global warming and climate 

change until about four decades ago when it became obvious that anthropogenic damage to the earth’s 

stratospheric ozone layer will lead to an increase in solar ultraviolet (UV) radiation reaching the earth’s surface, 
with a consequent adverse impact, (Ghanbarpour, et. al., 2010). Climate change is a complex and 

comprehensive process that can only be understood on the basis of the combined insights from various scientific 

disciplines (Saremi, et. al., 2011). Natural scientists contribute to an improved understanding by looking at 

issues like the global energy balance, the carbon cycle and changes in atmospheric composition (Gangyan, et. 

al., 2002). At the same time, economists, social scientists and engineers provide insights into the drivers of 

anthropogenic climate change and the options for adaptation and mitigation, and yet other scientists, including 

geographers and biologists, study the impacts of climate change (Szilagyi, et. al., 2006; Sharif, et. al., 2007; 

Krishna, et. al., 2011). They also stated that a key factor of interaction is the availability of water. Water is 

needed for agriculture, energy production, residential water demand and industry and will be influenced by 

climate change. These impacts could, certainly locally, be so strong that they would influence the human 

activities sufficiently to create feedbacks. 
Water resources play a crucial role in the economic development of Nigeria. Due to the increasing 

population growth and resulting demands on limited water resources, an efficient management of exiting water 

resources needs to be put in place for further use rather than building new facilities to meet the challenge. In the 

water management communities, it is well known that to combat water shortage issues, maximizing water 

management efficiency based on stream flow forecasting is crucial. 

In design, the hydrologist is most often required to estimate the magnitude of river flow for an ensuing 

period of hours, days, months or possibly longer. The time sequence of flows during critical periods can be of 

considerable importance. The operation of a reservoir is necessarily based on anticipated flows into the reservoir 
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and at key points downstream. Reliable flow forecasts are particularly important in the case of multipurpose 

reservoirs, and they are indispensable to the operation of flood mitigation reservoir systems (Cigizoglu, 2003; 

Valipour, 2012). 

Generation of synthetic sequences of daily hydroclimatic variables like stream flow is often used for 

efficient short-term and long-term planning, management and assessment of complex water resources systems. 

Downscaling methods are an important component of the hydrologist’s tool kit for generating such flow traces, 

which should be statistically indistinguishable from the observations (Rajagopalan et al., 2010). On the other 
hand, nonparametric methods require only a limited set of assumptions about the structure of the data, and they 

may therefore be preferable when a priori postulations required for parametric models are not valid (Higgins, 

2004). 

According to Otache et al., (2011), the principal aim of time series analysis is to describe the history of 

movement in time of some variables such as the rate flow in a dam at a particular size. Time series modeling for 

either data generation or forecasting of hydrologic variables is an important step in planning and operational 

analysis of water resource systems. 

A stochastic approach is presented for modeling a time series by an Autoregressive Moving Average 

model (ARMA). This enforces stationarity on the autoregressive parameters and in inevitability on the moving 

average parameter, thus taking into account the uncertainty about the correct model by averaging the parameter 

estimates. Several stochastic models have been proposed for modeling hydrological time series and generating 

synthetic stream flows. These include ARMA models, disaggregation models, models based on the concept of 
pattern recognition. Most of the time-series modeling procedures fall within the framework of multivariate 

ARMA models (Otache and Bakir, 2008). Generally, AR models and Autoregressive Integrated Moving 

Average (ARIMA) models have an important place in the stochastic modeling of hydrologic data. Such models 

are of value in handling what might be described as the short-run problem; that of modeling the seasonal 

variability in a stochastic flow series. 

The Box-Jenkins methodology, commonly known as the ARIMA model, has already been widely used 

in a number of related areas such as economic time series forecasting, ecological and weather prediction, 

medical monitoring, traffic flow prediction, and also physical activity recognition. Generally, the application of 

ARIMA models is mostly focused on predicting a single univariate time series (Halim, et al., 2007). Box and 

Jenkins (1976) stated that the ARIMA modeling aims at constructing the most appropriate model to fit observed 

data. Several types of ARIMA modeling methods and their derivatives could be used in the modeling seasonal 
time series, such as monthly stream flow time series. They are seasonal ARIMA, periodic ARIMA and 

deseasonalized ARMA model. The deseasonalized ARMA type of modeling strategy was adopted in this study 

due to its simplicity and effectiveness of modeling.  The general form of ARIMA model is expressed as 

(Vandaele, 1983, Otache, et. al., 2011): 

𝜑 𝐵 𝑦𝑡 =  𝜃 𝐵 𝑎𝑡            1 

Where 

𝑦𝑡 =  1 − 𝐵 𝑑𝑌𝑡       - Stationary series after differencing 

𝜑 𝐵 = 1 −  𝜑1𝐵 −  𝜑2𝐵
2 − ⋯ . . . . − 𝜑𝑝𝐵𝑝   - Non-seasonal autoregressive polynomial 

𝜃 𝐵 = 1 −  𝜃1𝐵 −  𝜃2𝐵
2 − ⋯……−  𝜃𝑞𝐵

𝑞   - Non-seasonal moving average polynomial 

at = white noise process 

Yt = dependent variable 
B is the backward shift operator defined as BXt = Xt-1 

Examination of the Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 

provides a thorough basis for analyzing the system behavior under time dependence, and will suggest the 

appropriate parameters to include in the model. The Box and Jenkins (1976) three-stage standard modeling 

procedure (identification, estimation, and diagnostic check) can be used to develop ARIMA models. 

The objective of this study is aimed at analyzing the flow discharge from Shiroro River between 1990-

2011 using AR, ARMA and ARIMA Models. 

 

II. MATERIALS AND METHODOLOGY 
The study area is located on latitudes 90 551 and 100 001N and longitudes 60 401 and 60 451E with its 

elevation ranging between 274 and 305 m. The Shirroro hydro-electricity dam has it source of water supply 

form river Kaduna. This study makes us of the inflow and outflow information/data form the dam.  

The development and use of a stochastic stream flow model involves some basic steps such as obtain 

stream flow record and other information, Selecting models that best describes the marginal probability 

distribution of flows in different sections and estimate the models parameters, selecting an appropriate model of 

the spatial and temporal dependence of the stream flows, verifying the computer implementation of the model, 

and validating the model for water resources system information. 
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The ARMA model basically includes the AR, and the seasonal ARIMA models (Vandaele, 1983, Otache, 2011). 

Box and Jenkins (1976) give the paradigm for fitting ARMA models as 

1. Model identification:-Determination of the ARM model orders. 

2. Estimation of model parameters:-The unknown parameters in equation 1 are estimated. 

3. Diagnostic and Criticism:-the residuals are used to validate the model and interval suggests potential 

alternative models which may be better. 

These steps are repeated until a satisfactory model is found. To enhance the understanding of these paradigms, a 
brief discussion of the steps is imperative here. 

 

Model Identification 

The initial model identification is done by using the autocorrelation function (ACF) and partial 

autocorrelation function (PACF). Despite this, an alternative procedure for selecting the model order is by using 

a penalized log likelihood measure. One of the popular measures is the Akaike’s information criterion (AIC). 

This is defined as; 

𝐴𝐼𝐶 𝑘 = 2 log 𝑀𝐿 + 2𝑘           2  

Where ML is the maximum likelihood and K is the number of independently adjusted parameters within the 

model. 

The best model is the one with the lowest AIC value for ARMA (p, q) models, k = p + q, and the AIC 
value can be calculated as; 

𝐴𝐼𝐶  𝑝, 𝑞 = 𝑁 log 𝛿𝑡
2 + 2  𝑝 + 𝑞          3 

Where, 𝛿𝑡
2 is the variance of the innovation process. 

 

III. RESULTS AND DISCUSSION 
The analysis was carried out using the MatLab 2009 statistical package. The results are presented in the 

Autocorrelation Functions (ACF) and Partial autocorrelation function (PACF) graphs to show the iterated 

variables in a simplified form. The ACF was initially carried on the available data. The stationarity condition 
here implies that the mean and the variance of the process were constant. The autocovariances model developed 

is stated in equation 4 below 

𝑟𝑘 = 𝑐𝑜𝑣 𝑍𝑡 , 𝑍𝑡−𝑘 = 𝐸  𝑍𝑡 − 𝑁  𝑍𝑡−𝑘 − 𝑁         4 

While that of the autocorrelation is obtained as 

𝑝𝑘 =  
𝑐𝑜𝑣  𝑍𝑡 , 𝑍𝑡−𝑘 

 𝑣 𝑍𝑡   .𝑣 𝑍𝑡−𝑘  
1

2 
            5 

k depends on the lag or time deference since these conditions apply only to the first and second-order or weak 

stationarity. The autocorrelations pk are independent of the scale of time series which is considered as a function 

of k and thus referred to as the autocorrelation function (ACF) or correlogrm. Since 𝑟𝑘 = 𝑟 − 𝑘  𝑟𝑘 =

𝑐𝑜𝑣 𝑍𝑡,𝑍𝑡−𝑘=𝑐𝑜𝑣 𝑍𝑡−𝑘,𝑍𝑡=𝑐𝑜𝑣 𝑍𝑡,𝑍𝑡+𝑘=𝑟−𝑘  and 𝑝𝑘=𝑝−𝑘. It is important to note that only the positive half 
of the ACF is usually considered. Figures 1 and 2 below shows the ACF for the standardized monthly and 

unstandardized flow of Shirorro River respectively.  

 

 
Fig. 1 Autocorrelation for standardized monthly flow       Fig. 2 Autocorrelation for daily flow (unstandardized) 

 

The positive section of the graph shows that there exists seasonality effect on the monthly flow of the 

river. This further implies that carrying out ACF alone won’t satisfy to build our model, thus the need for PACF. 

The ACF plays a major role in modeling the dependencies among observations, since it characterizes together 

with the process mean E(Zt) and variance  ro = v(Zt), the stationary stochastic process. 

The estimate of pk is given by the lag k sample autocorrelation in equation 6 
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𝜗𝑘𝑘 =  
𝑟𝑘−  𝜗𝑘−1,𝑘𝑘−𝑗

𝑘=1
𝑗=1

1−  𝜗𝑘−1,
𝑘=1
𝑗=1 𝑗𝑟 𝑗

            6 

J=0,1,2------------k-1 

K=0,1,2------------k-1 

For uncorrelated observations the variance of rk is given by 

𝑉 𝑟𝑘 =  
1

𝑛
               7 

𝜗𝑘 ,𝑗 =  𝜗𝑘−1,𝑗 −  𝜗𝑘𝑘  𝜗𝑘−1,𝑘−𝑗               8 

 

The plots of the PACF for the standardized monthly and daily flow of the Shiroro River are given 

below in the figure 3 and 4 respectively. It was noticed that the PACF is of a particular form. The 

autocorrelations decrease as the lag k increase indicating that observations closer together are more correlated 

than the ones far apart. For Ø > 0 the autocorrelations decay geometrically to zero, and for Ø < 0 the 

autocorrelations decay in an oscillatory pattern.  

 

 
Fig. 3 Partial autocorrelation for standardized monthly flow   Fig. 4 Partial autocorrelation for daily flow  

                                                       (unstandardized) 

The standardized data showed some degree of seasonality and thus gave room for the gap in the data 

points thereby standardizing the data brought which about a uniform decay in our data and the plot is as given in 

figure 4. From the graph, it was seen that our model is of lag 1 which gave us the basis for selecting our AR (p) 

model.     

The ACF of the residuals in our data reveals addition structure in the data that the regression did not 

capture. Instead, the introduction of correlation as a phenomenon that leads to proposing the AR and ARMA 
models. Adding nonstationary models to the mixed leads to the ARIMA model. Adding nonstationary models to 

the mix leads to the ARMA models popularized by Box and Jenkins (1970). 

AR models are based on the idea that the current value of the series, xt, can be explained as a function 

of past values, xt-1, xt-2,--------, xt-p, where  p determines the number of steps into the past needed to forecast the 

current value. 

 

An AR model of order p, is presented in equation 9 

𝑋𝑡 =  ∅1𝑥𝑡−1 +  ∅2𝑥𝑡−2 +  − − − −  + ∅𝑝𝑥𝑡−𝑝 + 𝑤𝑡        9 

Where xt is stationary and Ø1, Ø2,----------- Øp are constants (Øp ≠ 0). Assuming wt is a Gaussian white noise 

series with mean zero and variance δ2
w, μ= mean of xt 

𝑋𝑡 −  𝜇 =  ∅1 𝑥𝑡−1 −  𝜇 +  ∅2 𝑥𝑡−2 −  𝜇 + − − − −  + ∅𝑝 𝑥𝑡−𝑝 −  𝜇 +  𝑤𝑡             10 

Or 

𝑋𝑡 =  𝛼 +  ∅1𝑥𝑡−2 +  ∅2𝑥𝑡−2 +  − − − −  + ∅𝑝𝑥𝑡−𝑝 + 𝑤𝑡                       11 

Where  

α= (1-Ø,-------------Øp) 
Equation 11 above have some technical difficulties, because of the regressors,    xt-1,---- ,xt-p, which are 

random components, A useful  form follows by using  the backshift  operator to write the AR (p) model, (1) as 

 1 −  ∅1𝐵 −  ∅2𝐵
2 − − − − −  ∅𝑝𝐵𝑝 𝑥𝑡 =  𝑤𝑡                  12 

Or 

∅ 𝐵 𝑥𝑡 =  𝑤𝑡                            13 

Figure 5 shows the ACF of residual daily flow (AR) and figure 6 shows the PACF of residual for daily flow 

(AR). From the graphs, the value for ACF and PACF in terms of lag is seen to be not significant since it both 

shows very low lag value, thus, lag 1 was chosen.    
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Fig. 5: Autocorrelation functions of residuals for daily flow (AR)      Fig. 6: Partial autocorrelation functions of 

residuals for daily        flow (AR) 

Proceeding with the general development of autoregressive moving average and mixed ARMA models. 

 A time series of the form  𝑥𝑡 ; 𝑡 = 0, ±1, ±2, − − − − 3   is ARMA (p, q) if it is stationary and  

𝑋𝑡 =  ∅1𝑥𝑡−1 +  − − − −  + ∅𝑝𝑥𝑡−𝑝 + 𝑤𝑡 + 𝜃1𝑤𝑡−1 +  − − −  +  𝜃𝑞𝑤𝑡−𝑝           14 

With Øp ≠ 0, Ɵp ≠ 0, and δ2
w  > 0. The parameters p and q are called the autoregressive and the moving average 

order respectively. If xt has a nonzero mean μ, we set α = μ (1-Ø1---------- Øp) and write  the model as 

𝑋𝑡 =  𝛼 +  ∅1𝑥𝑡−1 +  − − −  +  ∅𝑝𝑥𝑡−1 +  𝑤𝑡 +  𝜃1𝑤𝑡−1 + − − −  + 𝜃𝑞𝑤𝑡−𝑞        15 

 To aid the investigation of ARAM models it will be useful to write them using   the AR operator, and 

the MA operator. The ARMA (p, q) model can be written   in concise form as 

∅ 𝐵 𝑥𝑡 =  𝜃 𝐵 𝑤𝑡                   16 

 ARMA models were carried out on the flow data as well and it was observed that the lag values 

obtained for both ACF and PACF were of very low ranges. This is indicated in the figure below.    
 

 
Fig. 7 Autocorrelation functions of residuals for daily flow (ARMA) Fig. 8 Partial autocorrelation functions of        

                                                                                                                    residuals for daily flow (ARMA)  

 

It is seen also from the figures 7 and 8 above as analyzed with ARMA model, that the ACF and PACF 

has very low lag values. Thus, lag 1 is also selected as the best option for the model. Including an integrated 

domain we have an ARIMA model figure which further show the relations in our river flow. This is shown in 

the close relations in the data points from figure 9 and 10 respectively. 

 Since the ACF and PACF shows some seasonality in the ARIMA model due to the closeness in their 
data points, thus, ARIMA model is similar to both AR and the ARMA model, but only has a difference in its 

components.  The ARIMA plots for both ACF and PACF are as given below figure 9 and 10 respectively; 

 

 
Fig. 9 Autocorrelation functions of residuals for  Fig. 10 Partial autocorrelation functions of residuals for 

daily flow (ARIMA)      daily flow (ARIMA) 
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IV. CONCLUSIONS 
             The study was able to conclude that the Shiroro river shows some correlated properties, but can still be 

used all year round with some degree of scheduling. This is because the amount of flow from the dam in each 

month of the year is still sufficient enough for optimum usage, though irrigation has to be regulated during the 

dry season, so as not to affect the dam reservoir level. Thus, in conclusion, the Shiroro River can be used for 
agriculture activities all year round but with some scheduling during the PICK dry season. 

            With proper regulations, there is a chance that if another dam is built along the down-stream after some 

contributing tributaries, there will be sufficient water to still produce Hydro power and water supply for the 

surrounding areas and Niger state as a whole. 
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