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 Abstract: Peephole optimization is a efficient and easy optimization technique used by compilers sometime 

called window or peephole is set of code  that replace one  sequence of instructions by another equivalent  set of 

instructions, but shorter, faster. Peephole optimization is traditionally done through String pattern matching that 

is using regular expression. There are some the techniques of peephole optimization like constant folding, 

Strength reduction, null sequences, combine operation, algebraic laws, special case instructions, address mode 

operations. 

The peephole optimization is applied to several parts or section of program or code so main question is 

where to apply it before compilation, on the intermediate code or after compilation of the code .The aim of this 

dissertation to show the current state of peephole optimization and how apply it to the IR (Intermediate 

Representation) code that is generated by any programming language. 
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I. INTRODUCTION 

 Compilers take a source code as input, and   typically produce semantically correspondent target 

machine instructions as output. A compiler (or a language translator) performs two operations: analysis and 

synthesis. The analysis phase determines the meaning of the source text, and the synthesis phase creates an 

equivalent program in a different language. 

In the case of compilers, automatic generation of language translation tools requires and facilitates 

understanding of language translation. Syntactic analysis especially is well understood, encompasses a sizeable 

formal literature, and is habitually done mechanically by programs like yacc and lex. 

A common method for implementing a group of languages on a collection of machines is to have one front end 

per language and one back end per machine. Each front end translates from its source language to a common 
intermediate code, called an UNCOL, and each back end translates from the common intermediate code to a 

specific target machine's assembly language. 

 

 
Fig 1: Compiler Process 

Thus a "compiler" consists of a front end, a back end, and possibly programs that optimize the 
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intermediate code. When this model has been adopted, adding a new language or new machine only requires 

writing one new program (front end or back end) to maintain the property that all languages are available on all 

machines. 

The question of where to perform the optimization arises. There are three theoretical possibilities: 

1.   in the front ends; 

2.   on the intermediate code; 

3.   in the back ends. 

If the first option is chosen, many common optimizations will have to be programmed into each front 

end, increasing development effort. 
Similarly, putting the optimizations in the back ends will also require a duplication of effort. 

Though, any optimizations that can be performed on the intermediate code itself only need be done once, with 

the results being applicable to all front ends and all machines being used. 

The compiler’s task is to provide the translation. An ‘optimal translation’ would ideally require minimal CPU 

time and memory.  

This is usually not possible. But optimizing compilers can approach this by improving generated code 

with various techniques. Therefore, code optimization aims at producing more proficient, faster, and shorter 

code without changing its effects.  

The problem with naive code generation is that resulting code often contains redundancies when 

juxtaposed. These can easily be reduced with an effective optimization technique – peephole optimization.  

The peephole optimizer is repeatedly passed over the Modified assembly code, performing optimizations until 

no further changes are possible. 
Peephole optimization is an effective technique for locally improving the target code. small sequences 

of target code instructions are examined and replacement by faster sequences wherever possible.Common 

techniques applied in peephole optimization. 

 

 
Fig 2:  Optimization Level 

 

1) Constant Folding 

2) Strength Reduction 

3) Null sequences 

4) Combine Operations 

5) Algebraic Laws 

6) Special Case Instructions 

7) Address Mode Operations 

8) Copy Propagation 

 

II. STRATEGIES 
In peephole optimization technique, this part presents a formal analysis of the pattern matching strategies that 

have been implemented 

 

1.1Strategy Part 
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Fig 3: Peephole optimization as information processing problem 

 

The main focus of this work is the strategy part shown in Fig 3, which is divided into two parts: 

 

1.1.1 Pattern matching strategy:  
This component particularly deals with the nature of the application of a single optimization rule to the 

input Matching strategies that have been Implemented in this work is the more primitive declarative, regular 

Expressions-based matching strategy, and a more abstract, object-oriented generic matching strategy. 

 

1.1.2 Rule application strategy:  

For this component, the grouping and ordering of the rules is analyzed as for a certain aim. In the 

implementation, the backwards strategy has been employed for both the regular expressions strategy and the 

generic matching strategy. The general matching policy has been extended with the ability to cascade rules, i.e. 

to control a number of rule application sequences. 

 

III. CODE GENERATION STRETEGY 

In order to understand the significance of the optimizations, it is necessary to understand something 

about typical code sequences produced by front ends for EM.  

The traditional way to generate good code for commonly occurring statements is to build a myriad of 

special cases into all the front ends. For example, the statement N := N + 1 occurs often in many programs; so 

EM has a special INCREMENT VARIABLE instruction.  

The normal approach would be to have the front end check all assignments to see if they can use this 

instruction. It is our belief that this approach is a mistake and that recognition and replacement of important 

instruction sequences should be done by the optimizer. 

In fact, our basic intermediate file optimizer performs only this kind of peephole optimization; data 
flow and other optimizations can and should be done by other programs, cascading them in the manner of UNIX 

filters. 

Coming back to the case of assignment statements, in general, assignment statements can be hard, such 

as A[I + 1].FIELD1 := B[J * K].FIELD2[M] 

Although such statements measure rare, front ends should be ready to handle them consequently, the 

common strategy used by our front ends is to judge the address of the right-hand side, shove this address onto 

the stack, and then do a LOAD INDIRECT n instruction, which fetch the address through pop the address  and 

pushes the n bite-long object starting at the address.  

After that, the address of the left-hand part is also evaluated and pushed onto the stack, and then a 

STORE INDIRECT n instruction, which fetches the intented address and n-byte object from the stack and 

performs the store operation, is executed.  

There are many special cases of the assignment statement that can be optimized, but the front ends 
ignore most of them, leaving the work to the optimizer. 

Next to assignment statements, if statements are most common. Statements of the form if A = B then. 

Occur far more frequently than other types; so the obvious EM code sequence consists of instructions to push A 

and B onto the stack followed by a BNE instruction, which pops 2 operands and branches to the else part if they 

are unequal.  

At first look it might appear that six Bxx directions would be required within the EM architecture, for 
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xx = EQ, NE, LT, LE, GT, and GE, but fact is that many more are needed, since a entire set is needed for single-

precision integers, pointers,floating-point numbers, double precision integers, unsigned integers,  sets, etc.  

To avoid this large number, EM has one compare instruction for each data type   that pops two 

operands and replaces them with a -1, 0, or +1, depending on whether the first is greater than, equal or less than 

the second.  

Then there are six Txx instructions for replacing this number with true (represented by 1) or false 

(represented by 0), it is based on the relational operator.  

 

IV. OPTIMIZATION PATTERNS 

The optimizer is driven by a pattern/substitute table consisting of a collection of lines. Each line 

contains a pattern part and a replacement part. A pattern or substitute part is composed of a consecutive 

sequence of EM instructions, all of which designate an opcode and some of which designate an operand. (By 

design, no EM instruction has more than one operand.) 

The operands can be constants, references to other operands within the line, or expressions involving both 

Pattern Replacement 

 

(1) LOV A INC STV A ~ INV A 

(2) LOV A LOV A + 2 ~ LDV A 
(3) LOC A NEG ~ LOC –A 

 

It often occurs that the output of one optimization produces a pattern that itself can be optimized. In 

reality, this principle has been extensively used in the design of the optimization table to reduce its size. By 

repeating the matching process until no more matches can be found, patterns much longer than the longest 

optimization table entry can ultimately be replaced. After a replacement, the code pointer is moved back a 

distance equal to the longest pattern to make sure that no newly created matches are missed. 

 

V. MEASURED RESULT 

To measure the effect of the peephole optimizer, we have run two tests. In the first we compared the 

number of machine instructions in each optimized EM program with the number in the unoptimized EM 

program. Thus, for each program we have a number between 0.00 and 1.00 giving the number of instructions in 

the optimized program as a fraction of the original. This metric was chosen since it is independent of both the 

source language and the target machine and directly measures what the optimizer primarily attempts to do, 

namely, eliminate EM instructions. This metric can also be protected on theoretical grounds. EM code is really 

just glorified reverse Polish, in other words, the parse tree linearized into postfix order. Removal of an EM 

instruction typically corresponds to a removal of a node in the parse tree. Since object code size is typically 

proportional to parse tree size, such elimination normally has a straight impact on the final object code size. The 

dimensions presented below bear this out. 

The occurrence frequencies per 1000 optimizations are shown in Table III which is labeled column 

EM. The median saving is 16 percent: one in six EM instructions is eliminated. The second test consisted of 
translating the optimized and unoptimized EM code into PDP-11 object code and comparing the number of 

bytes produced in each case. These results are given in Table III in the column labeled PDP-11. 

The median reduction in the object code is 14 percent, close to the EM result. This closeness suggests that 

nearly all the EM optimizations are indeed reflected in the final object code. In 2 test programs, the optimized 

PDP-11 code was increased by 2 percent over the unoptimized code due to optimization 50; this was traced to a 

design error in the (original) EM to PDP-11 back end. (With the optimization the operands were actually 

stacked, whereas without it they were not.) This fault can merely be fixed, however. 

On the basis of these results, we believe peep holing the intermediate code to be worthwhile, since the 

optimizer need only be written once, for all languages and every machines, and it in no way inhibits extra, more 

sophisticated optimizers, e1ither on the source code, on the EM code, or on the target code. Moreover, the 

peephole optimizer is fast: 1140 EM instructions per CPU second on a PDP-11/ 45 excluding certain overhead 
not related to peephole optimization and 650 instructions per CPU second including all overhead. This speed 

was achieved without any special effort to tune the program.  

It could easily be made faster still by hashing the pattern table instead of examining all patterns starting with the 

current op code 

 

TABLE 4:  DISTRIBUTION OF AMOUNT OF REDUCTION IN SIZE 
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VI. SUGGESTED RESEARCH SCHOP 

 Further suggestions for interesting extensions and improvements: 

 

5.1 Labels table:  
Since the labels table has proven to be useful, it should be utilized more. The current implementation of 

the look ahead matching procedure using the labels table covers two cases only. 
These should be extended and more should be added. Then, as generic matching is currently employed at level 1 

only, ‘deeper’ generic matching by means of the labels table might help finding complex structures like chains 

of jump instructions and label definitions, or other constructions. 

Since this ‘table’ approach is a good way of accessing information quickly, another extension might consist of 

researching other constructs than jump instructions and label definitions for which a table might be useful. The 

aim here is to do more intelligent matching. 

 

5.2 Extended generic strategy:  
Basic improvements can be made concerning the maintenance of the options. For more challenging 

improvements first the look-ahead behavior should be analyzed closer with a  good rules set and suitable test 

files. An extension might then attempt to automatically find the best look-ahead setting (or cascade) for the 
given assembly input before applying it. This would be a ‘cascade of rule sequences’ 

. 

5.3 New strategies: 

  The analysis of pattern matching strategies does not end with the generic ones. Other rule application 

and pattern matching strategies might be explored: it would be particularly interesting to combine generic 

matching with AI methods as a next step. 
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