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Abstract: The aim of this paper is to give an original mathematical model that describes the heat exchange 

between the main components of a thermal solar collector in an Integrated Solar Combined Cycle (ISCC) plant. 

The obtained model is used to perform easier simulations of the studied system and gives the temperature 

evolutions of the heat transfer fluid and of the metal tube receiver. The model could also be used to optimize the 
solar collector design according to desired objectives.  
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I. INTRODUCTION 
The fight against the problem of climate change caused by pollution of air and water is increasing. It 

becomes overwhelmingly urgent. This is mainly due to the continued exploitation of fossil fuels resources. It is 

therefore essential to find a solution allowing production of CO2-free energy to meet our daily and industrial 

needs. The solar energy is one of the renewable energies. It is free and especially clean, and can perfectly help 

to solve this problem. The exploitation of this energy would be useful and more advantageous in solar plants by 

concentrating the sunlight. This energy can be stored as heat energy for 12 hours by using as heat transfer fluid 

the molten salt, the stone or the phase change materials. 

The process of concentrating solar energy can be achieved by a system based on concentration of 

lenses, or reflective mirrors such that the sunrays converge onto a target of a smaller size and located at the 

focal plan of this surface. 
Generally, there are two main methods used to perform the concentration of solar energy (see Fig. 1): 

 Line-focusing systems: linear concentration. 

 Point-focusing systems: concentration point. 

In the first class, there are two types of solar plant: solar power tower (Big Solar Furnace in Odeillo, 

France, 1MW), and solar power of parabolic Dish-Stirling (Dish Stirling prototype plants of 10 kW each in 

Almeria, Spain). 

In the second class, we find two types of solar plant: solar plant of parabolic trough (Nevada Solar One 

Power Plant, 64MW and Ain Beni-Mathar solar plant northeast Morocco, 472 MW), and solar plant of Fresnel 

linear collectors ( PE1 solar plant in Murcia, Spain, 1.4 MW). 

 

   
Fig. 1:  Different methods for solar concentration 
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The thermodynamic solar power plants (known concentration in Fig. 2) use a lot of mirrors that make 

direct the solar rays to a heat transfer fluid to be heated at high temperatures. For this reason, the reflecting 

mirrors have to follow the sun’s movement to collect and concentrate a maximum rate of solar radiation 

throughout the solar cycle used. The heat produced by the heat transfer fluid will be used to generate electricity 

using steam turbines or gas. 

 

   
Fig.  2:  Different types of solar concentration plants [1] 

 

The technology of thermodynamic solar has current applications as power generation, solar power 

booster, and generation of steam for industrial processes. 

In this paper, we are interested in solar plant of parabolic trough and specifically in solar plant which 

operating with the Integrated Solar Combined Cycle (ISCC). Here we concentrate on the case of cylindro-

parabolic plants as that developed in Ain Beni-Mathar, located northeast of Morocco. The studied plant uses an 

integrated solar system combined with a system running a natural gas to produce electricity continuously even 

in the absence of the sun. 

This solar plant consists of a solar field, a solar heat exchanger, two gas turbines, a steam turbine and 
an air condenser. The solar plant principle can be described as follows (Fig. 3). The extracted gases from the 

turbines are injected in two boilers. The solar energy collected by the trough parabolic mirrors, allows 

increasing the flow of vapor produced in the recovery boilers. An amount of water from the condenser enters 

the boiler. When it has been heated to the evaporation point, a part of the water will be led to the solar heat 

exchanger where it will be heated to the boiling point, evaporated and overheated to return then to the steam 

generator. It will be re-overheated before being introducing into the steam turbine of three levels (high, medium 

and low pressure) [2]. 

 

 
Fig. 3:  Principle of Ain Beni-Mathar solar thermal plant [2]. 

 

However, the annual efficiency of these solar plants is affected by the instantaneous variations of the 

weather. The movement of the sun, the clouds, and the wind speed defines these variations. They are observed 

essentially at the parabolic trough of solar field. Therefore it is necessary to model the operating of these solar 

collectors for improving the efficiency of the solar field and to contribute to a better performance of the entire 

solar plant. 
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The paper is organized as follows. The next section describes the physical interactions of the solar 

plant components. Based on the energy balance, a general model is established. The various parameters depend 

strongly on the temperature of the main elements of the collector. However this model which looks simple is 

very complex for numerical implementation. The next section is devoted to a different writing of the model 

which leads to a look-like logistic model. The new version can be easily implemented and used for design or 

control problems. It is illustrated by simulation results. 

 

II. THE PHYSICAL SYSTEM 
2.1 DESCRIPTION OF THE SOLAR FIELD 

The solar plant is an Integrated Combined Cycle Thermo-Solar Power plant, located in northeast of 

Morocco. It consists of 256 parabolic trough solar collectors. These collectors are classified in 64 parallel loops; 

each loop is 618 meters long, see Fig. 4. The receiver tubes are located at the focal axis of the parabolic trough 

solar collectors. They contain a heat transfer fluid which temperature can reach 393 °C. 

 

   
Fig.  4:  The receiver loop [2] 

 

The collector used in this solar thermal plant consists of parabolic reflectors (a series of mirrors), a 
metallic structure, a solar tracking system, and receiver tube. This type of parabolic trough solar collectors may 

have a concentration ratio of about 80%. 

The mirror is made of borosilicate glass, whose transmittance is approximately 98%. This glass is 

covered with a layer of silver in its lower part, with a special coating and protection. The best reflector can 

reflect 97% of incident radiation. 

The role of the solar tracking mechanism is adapted to maintain the incident solar radiation 

perpendicular to the reflector. The radiation is reflected to the focal line of the parabola where a receiver tube 

contains the heat transfer fluid. 

The tube receiver or heat collection element (HCE) is of Schott PTR 70 type [3]. It is composed of two 

concentric tubes. The stainless-steel absorber tube, surrounded by a partially evacuated glass envelope to 

minimize heat losses, see Fig. 5. The receiver tube contains a heat transfer fluid which is a synthetic oil 

(Therminol VP-1, [4]). 
 

   
Fig. 5:  The solar receiver tube [3] 

 

 2.2   FIRST MODELLING APPROACH 

Modelling parabolic trough solar collectors has been explored by many authors [5, 6, 7, 8, 9, 10]. The 

modelling principle is based on energy balance between the essential elements of the heat collection element 

(HCE) which are the receiver tube, and the heat transfer fluid. The Fig. 6 shows a transversal section of the 
different thermal exchanges [5, 6, 8] between the receiver tube, and the heat transfer fluid, and their 

environment. 
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Fig. 6:  Scheme of the different thermal exchanges of the HCE  

 

The main purpose of this modelling is to predict the equilibrium temperature of the fluid at the output 

of the solar field generated by the flow rate at the entrance of the receiver tube. The following hypotheses are 

considered: 

1.   The properties of the fluid depend on the temperature. 

2.   In each section of the tube, the fluid flow is assumed to be uniformly distributed and equal to a mean       
3.   The solar radiation and the fluid flow vary on time and are the same for the whole receiver tube  

4.   The fluid is assumed to be incompressible. 

The state variables we consider are the temperature  of the fluid Tf, the absorber tube Tm and the glass 

envelope Tgl. The energy balance for the heat collection element leads to three partial differential equations of 

three temperatures. The first equation describes the fluid temperature Tf. It depends of time t and on space x. 

The second and third equations describe the absorber tube temperature Tm and the glass envelope temperature 

Tgl. 

The obtained system of equations is then given by: 

 

 
In this system of equations, the amounts of energy were considered and defined from thermodynamics. 

These energies are often heat exchange between the different components of the HCE, either by convection or 

conduction, or radiation, taking into account the impact of the environment [5, 6, 7, 8, 10]. The heat transfer 

fluid, flowing inside the metal tube, receives by convection an amount of heat that depends mainly to the 

characteristics of fluid such as the density, the specific heat, the kinematic viscosity, the thermal conductivity 
[2] etc. These characteristics are related to the fluid temperature. The heat received is given by:  

 

                                                       )(= ,,, fminmsurffmr TTAhQ                                               (2) 

 

The amount of the absorbed solar energy, Qsol,abs, by the parabolic trough solar collector depends on the weather 

and the cleanliness of the collectors and is defined by: 

  

                                                      opteffsabssol DFIQ )cos(=,                                    (3) 

 

The two concentric tubes (metal and glass) of the receiver tube, are exchanging the heat by conduction 

and by radiation [5, 6, 7, 8]. This heat energy depends on the different characteristics of the stainless steel and 

the glass, and is defined by: 

                                           condinradinin QQQ ,,=                                                                                   (4) 

where 
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An amount of thermal energy is exchanged, by convection and radiation [5, 6, 7, 8], between the glass 

envelope and the environment. This thermal energy is defined by the characteristics of the glass and those 

defining the ambient air, as follows:  

                                   convoutradoutout QQQ ,,=                                                              (7) 

where 

                         )(= 44

,,, ambgloutglsurfglradout TTAQ                                                                (8) 

                                      )(= ,,,, ambgloutglsurfambglconvout TTAhQ                                                    (9) 

After replacing in equations (1) and dividing by ρCA for each, we obtain a system of partial differential 

equations (PDE) which can be rewritten in the following simple form 

 

 

 
 

where the coefficients ai, bi and ci are given in the annex. The model of the solar trough collector 

allows the knowledge of the fluid temperature evolution only at the output of the receiver tube. Furthermore it 
could help to choose the parameters of the plant in such a way that the temperature can be maintained at a 

desired equilibrium value, despite instantaneous variations of the weather. This could be regulated by a 

convenient flow rate at the entrance of the receiver tube. However numerical simulation of the complete 

obtained model above (10), leads to various difficulties, due to the complexity of the model coefficients which 

all depend nonlinearly on the temperature. 

So it becomes necessary to modify the obtained model for easier simulations. The first assumption is to 

assume that a perfect vacuum exists between the two concentric metal and glass tubes. In this case we can 

neglect the glass behavior and thus we obtain a system coupling fluid and metal temperatures dynamics. This 

assumption allows to study the heat exchange between the fluid and the metal tube. The first exchange describes 

the amount Qg of energy defined in equation (2), while the second exchange is defined by Qabs,sol - Qg - Qm,amb. 

The amount of energy Qm,amb describes the heat exchange between the metal tube and its environment. This 
thermal energy is given by : 
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Where, the coefficients βi are different from the bi’s and are given in the annex. One can notice that 

the various coefficients depend on the temperature of the fluid or the metal tube 

. 

III. MODIFIED MODEL 
Firstly the model (12) can be easily studied from mathematical point of view. For that purpose we 

rewrite it in a matrix form, by considering the vector z defined by z =  . Thus the above system can be 

easily represented in the following vector form 

 

                                                                    
11= BzAz                                                                      (13) 

 

Where A1 is a matrix of order (2 * 2) and B1 is a matrix of order (2 * 1), defined by 
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This formulation shows that the considered system is well posed from mathematical point of view and, 

under the condition that the coefficients are bounded, the system admits a unique solution. In what follows we 

consider the model (12) and we explore some coefficients which affect dramatically the resolution. 

In spite of the simplicity of the model (12), it is not consistant with the nature of the system. Furthermore its 
numerical implementation leads to surprising numerical results. It is difficult to find in the literature models 

which can lead to realistic simulations. Most of the models describe very complex physics but lead to non 

possible simulations. A model can be considered as a fine model if it is simple and can be implemented easily 

for simulations. That is why we consider a modified model which could be used by solar plant modelers without 

complex physical considerations. 

 

3.1   MODELLING APPROACH 

The main difficulties in the above model are due to the temperatures sensitivity with respect to the 

model coefficients. However we have noticed that some of the coefficients depend nonlinearly of the 

temperature. Various simulations show that the solution evolves dramatically for small variations of certain 

coefficients. A numerical study of the coefficients leads to a second assumption which consists to neglect the 

coefficients which value are lower than . On an other hand the coefficients  and  are slightly linear 

with respect to the fluid temperature  as shown in Fig. 7. 

 

    
Fig. 7:  Evolution of the coefficients  and   

This suggests to consider a linear description for these coefficients and to reformulate the system under the form 
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This formulation can be seen as equations of an equilibrium model where the temperature will be 

stabilized around a certain value. One can consider other approaches for the coefficients modelization but they 

do not lead to any improvement of the model. 

 

3.2   SIMULATIONS 

 The obtained model consists in a system of two nonlinear partial differential equations. 

 

 
 

It evolves in time t and depends on one-dimensional space x. Formally it derives from the system (12) 

and therefore it is well posed from mathematical point of view. 

In this section we give a numerical approach for the resolution of (17). The discretization principle for solving 
boundary-value problems consist of replacing each of the derivatives in the differential equation by an 

approximate difference quotient approximation. The difference quotient is generally chosen so that a certain 

approximation order error is maintained. Other methods for solving (finite elements) these equations could be 

considered. 

The model (17) is explicitly nonlinear. In this system, we know the mean values for all the remaining 

coefficients. The range of variation of the temperature can lead to an explicit approximation of the coefficients. 

Thus we find the following mean values for the considered coefficients:   

 

 
 

For the discretization let L be the length of a loop of the HCE and ∆x a step size. Denote Nx the 

number of space paths of length ∆x (see Fig. 8), then . In the considered plant we have  

meters. For the time horizon, we consider the time step denoted  and Nt the number of time steps. If we 

denote tperiod the time length between the sunrise and the sunset (with a maximum solar flux), then  

period . 

 

   
Fig. 8:  Discretization of the heat collection element 
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The resolution of the reformulated model requires initial and boundary conditions. We assume that 

the initial known temperature of the fluid. We also denote  , the initial 

temperature of the metal tube, assumed to be known. In practical applications we consider . 

 

3.2.1   TIME EVOLUTION TEMPERATURES 

The model previously modified is given in (17) where  is the fluid temperature and  is the metal 

tube temperature. For the time evolution of the fluid temperature at any point of the receiver tube, it is not 

necessary to consider the space evolution. So we consider firstly that the partial derivative in space vanishes, 

thus the first equation of (17) becomes 
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Fig. 9:  Evolution of the fluid temperature . 

 

In this case we neglect the space variable and denote   

)( tnTT f

n

f 
 

 

and we apply a modified Euler method (more accurate) with the initial conditions  . Then we obtain 

the evolution graphs given in Fig. 9 for the fluid temperature and in Fig. 10 for the metal tube temperature. 

 

   
Fig. 10:  Time evolution of the metal tube temperature .  

 

We notice that the metal tube temperature is always higher than that of the fluid. For the fluid and the 

receiver tube the figures show that the temperature evolves until an equilibrium level which maintains the fluid 

temperature at about 400° Celsius. These results are consistant with the measurements obtained by the output, 

under ideal conditions. 

 

Remark 3.1  
In the applications depending on the considered plant one can introduce a weighting term ξ to adapt the 

evolution of the fluid temperature (which may depend on physical parameters and day insulation). For that 

purpose we can rewrite the term  considering 
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The figure (11) shows the influence of the coefficient ξ on the time evolution of the fluid temperature.  

 

   
Fig. 11:  Evolution of the fluid temperature Tf  in time in the cases where the weighting term ξ = 0.19, and ξ = 

0.16  

The Fig. 11 shows that at the beginning of the time interval, and for a weighting term equal to 0.19, the 
fluid temperature Tf increases with time to a maximum value ranging from 352°C to 362°C. Then the fluid 

temperature Tf decreases to a value of about 324°C . However when the weighting term ξ is equal to 0.16, the 

fluid temperature Tf increases with time to reach a maximum value of about 365.9°C and remains maintained at 

this value. The weighting term ξ can be used in the discretized equation for an adaptation of the evolution to any 

situation.  

 

3.2.2   TIME AND SPACE EVOLUTION OF THE TEMPERATURES 

Introduce now the mesh points of coordinates , for  and   and 

let  be an approximated value of the temperature  (Tf for the fluid and Tm for the metal tube) 

denoted  

 ),( tnxjTT n

j   

 

 

 
Fig. 12:  Element of the distributed parameter model 

 

With these notations we illustrate the efficiency of the given model considering the following finite 

difference first order approximations of the derivatives 
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The resolution of the reformulated model requires initial and boundary conditions. The initial 

conditions have been stated in previous section. Additionally we consider boundary condition at the entrance of 

the receiver tube given by  and  assumed to be known. 

In this case, we have to discretize the principal model in equation (17). Denote  and apply 

the finite difference discretization in time and space given in (19) (see [11]), we obtain 
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Fig. 13:  Global (time-space) temperature evolution of the fluid 

. 

For the illustrative simulation, we have considered a time step equal to 0.005 second and a space step equal to 

0.1 meter. 

The Fig. 13 presents the obtained results for the fluid temperature  throughout the receiver tube at different 

times, and Fig. 14 that of the metal tube . 

 

   
Fig. 14:  Global (time-space) temperature evolution of the metal tube.  

 

The Fig. 13 and 14 show that the temperatures increase from initial temperature at the entrance of the 

tube to reach a maximal value of about 400°C for the fluid and 600°C for the metal tube. The metal tube 

temperature reaches its equilibrium value very quickly all along the tube, because all the tube is in the focal line 

of the solar receiver and is directly exposed to the sunlight. 

The nomenclature and the annex given after would help to achieve the illustrative simulations. 

 

Remark 3.2 

The modified model introduced in the previous section has reduced the model to a system of two 

differential equations (17). We can notice that the receiver tube is all located in the focal line of the parabolic 

trough. Consequently we can consider that the whole receiver tube is excited by the same amount of energy and 

thus its temperature is equal to a mean value .  

This is obviously illustrated by the Fig. 14. Additionally the users could be interested only by the fluid 

temperature evolution and not that of the metal tube. This suggests that the fluid receives the same amount of 

energy all along the tube which can be considered as a passive control on the fluid. Therefore we can simplify 

the model by neglecting the receiver tube equation and considering that the fluid is excited by its contact with 

the metal tube, by a certain amount to be identified. This allows to consider the following simplified partial 

differential equation which state is the fluid temperature Tf 
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where   is assumed to be known. The system is augmented by initial and boundary conditions. 

We can assume that the mean value  is equal to that given by measurements of the metal tube temperature. In 

this case the various coefficients of the model do not fit with the physical values of the previous model. Thus 

the model can be improved using an identification of the other coefficients . The following 

figures show that the results are very significant and that the model can be drastically reduced. 
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Fig. 15:  Fluid temperature evolution (at a fixed point of the tube) without considering the space impact. 

 

 The numerical simulations have been achieved considering the following values: , 

,  and . 

The Fig. 15 shows that the result is quite similar to that of the complex model considered in the first section. 

 

 
Fig. 16:  Fluid temperature evolution, at different times, all along the receiver tube 

.  
The Fig. 15 and 16 show that the temperature level at the end of the tube is about 375°. This 

temperature level can be adjusted and regulated at any convenient desired level, depending of the real 

conditions of the trough solar receiver.  

IV. CONCLUSION 
In this paper we give an original modified model of the heat collector element within an Integrated 

Combined Cycle Thermo-Solar Power Plant. The given approach is more accurate and easier to implement. 

This model has necessitated the study of heat exchange between the three components of the heat collection 

element. The reformulation of the model was based by considering a perfect vacuum between the two 

concentric tubes (metal tube inside the glass envelope) of the heat collection element (HCE). The model 
established consists in two first order partial differential equations depending on time and one dimension space 

variable, and may be reduced to one partial differential equation. The different simulation results show that both 

the fluid temperature Tf and the metal tube temperature Tm evolve until reaching a certain equilibrium value. 

The obtained results are consistent with the plant values. The proposed model can be improved by considering 

an identification of some of the coefficients. This identification depends on the considered solar plant and will 

be explored in a future work. 
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ANNEX  

 : HTF density 

  : Metal (Stainless steel) density 

  : Glass density 

   : HTF specific heat 

  : Metal (Stainless steel) specific heat 

  : Glass specific heat 

  : Inside diameter of the metal tube 

 : Outside diameter of the metal tube 

   : Inside diameter of the glass 

 : Outside diameter of the glass 

 : Noted also . Cross-sectional area inside the metal tube 

     : Cross-sectional area of the metal tube 

     : Cross-sectional area of the glass 

  : Inner surface area per length of the metal tube 

 : Outer surface area per length of the metal tube 

 : Outer surface area per length of the glass envelope 

 : Solar Direct irradiance 

 : Incidence modifier function 

θ : Angle of incidence, degree 

 : Effective width of the collector 

 : Optical efficienc: Factor depending of dirt on the mirrors 

 : Effective thermal air conductivity 

 : Ambient temperature 

 : Overall HTF volume flow rate 

 : Total number of collectors 

 : Metal (Stainless steel) emissivity 

 : Glass emissivity 

 : Stefan-Boltzmann constant 

    : Convection heat transfer coefficient between the metal tube and the HTF 

 : Convection heat transfer coefficient between the glass and the ambient 

 : Convection heat transfer coefficient between the metal tube and the ambient. 


