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Abstract: - This paper deals with the determination of temperature, displacement and thermal stresses in a thin 

clamped circular plate with internal heat generation. A clamped circular plate is subjected to arbitrary known 

interior temperature. Under steady state, the fixed circular edge and lower surface of circular plate are thermally 

insulated. Here we modify Kulkarni (2008) and designed most general solution of displacement potential, radial 

stresses and angular stresses. The governing heat conduction equation has been solved by the method of  
integral transform technique. The results are obtained in a series form in terms of Bessel’s functions. The results 

for temperature change, displacement and stresses have been computed numerically and illustrated graphically.  
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I. INTRODUCTION 
   During the second half of the twentieth century, nonisothermal problems of the theory of elasticity 

became increasingly important. This is due to their wide application in diverse fields. The high velocities of 

modern aircraft give rise to aerodynamic heating, which produces intense thermal stresses that reduce the 

strength of the aircraft structure.   

   The inverse thermoelastic problem consists of determination of the temperature of the heating medium, 

the heat flux on the boundary surfaces of the thin clamped circular plate when the conditions of the 

displacement and stresses are known at the some points of the thin clamped circular plate under consideration. 

Noda et al. (1989) discussed an analytical method for an inverse problem of three dimensional transient 

thermoelasticity in a transversely isotropic solid by integral transform technique with newly designed potential 
function and illustrated practical applicability of the method in engineering problem. Sabherwal K. C. (1965) 

studied an inverse problem of heat conduction. Greysa et al. (1989) investigated an inverse temperature field 

problem of theory of thermal stresses.  Deshmukh and Wankhede (1998) studied an inverse transient problem of 

quasi static thermal deflection of a thin clamped circular plate. Ashida et al. (2002) studied the inverse transient 

thermoelasticity problem for a composite circular disc constructed of transversely isotropic layer. Most recently 

Bhongade and Durge (2013) considered thick circular plate and discuss, effect of Michell function on steady 

state behavior of thick circular plate, now here we consider a thin clamped circular plate with internal heat 

generation subjected to arbitrary known interior temperature. Under steady state, the fixed circular edge and 

lower surface of circular plate are thermally insulated. Here we modify Kulkarni (2008) and designed most 

general solution of displacement potential, radial stresses and angular stresses. The governing heat conduction 

equation has been solved by the method of integral transform technique. The results are obtained in a series 
form in terms of Bessel’s functions. A mathematical model has been constructed for thin clamped circular plate 

with the help of numerical illustration by considering aluminum (pure) circular plate. No one previously studied 

such type of problem. This is new contribution to the field. 

 The inverse problem is very important in view of its relevance to various industrial mechanics subjected to 

heating such as the main shaft of lathe, turbines and the role of rolling mill.  

 

II. FORMULATION OF THE PROBLEM 
    Consider a thin clamped circular plate circular plate of thickness 2h defined by 0 ≤ 𝑟 ≤ 𝑎,−𝑕 ≤ 𝑧 ≤
𝑕. Let the plate be subjected to arbitrary known interior temperature 𝑓(𝑟) within region−𝑕 < 𝑧 < 𝑕. With lower 
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surface 𝑧 = −𝑕 and circular surface 𝑟 = 𝑎 are thermally insulated. Under these more realistic prescribed 

conditions, the unknown temperature 𝑔 𝑟 , which is at upper surface of the plate. Temperature, displacement 

and stresses in a thin clamped circular plate with internal heat generation are required to be determined.   

    Following Roy Choudhuri (1972), assume that for small thickness h plate is in a plane state of stress. In fact 

the smaller the thickness of the plate compared to its diameter, the nearer to a plane state of stress is the actual 

state. Then the displacement equations of thermoelasticity have the form 

    𝑈𝑖,𝑘𝑘 +  
1+𝑣

1−𝑣
  𝑒,𝑖 = 2  

1+𝑣

1−𝑣
 𝑎𝑡𝑇,𝑖                                                                                   (1) 

          𝑒 = 𝑈𝑘,𝑘  ; 𝑘, 𝑖 = 1,2.              (2)              

where   

        𝑈𝑖  - displacement component 

         e -   dilatation  

         T – temperature 

and  𝑣 and 𝑎𝑡are respectively, the Poisson’s ratio and the linear coefficient of thermal expansion of the plate 

material. 

Introducing        

      𝑈𝑖 =  𝑈,𝑖  𝑖 = 1, 2.  

we have  

     ∇1
2𝑈 =  1 + 𝑣 𝑎𝑡  𝑇                                                                                            (3) 

      ∇1
2=  

𝜕2

𝜕𝑘1
2 +  

𝜕2

𝜕𝑘2
2  

      𝜎𝑖𝑗 = 2𝜇 𝑈,𝑖𝑗 − 𝛿𝑖𝑗  𝑈,𝑘𝑘  ,      𝑖, 𝑗, 𝑘 =  1, 2.                    (4)

           

 where  𝜇 is the Lames  constant and 𝛿𝑖𝑗  is the Kronecker symbol. 

In the axially-symmetric case 

     𝑈 = 𝑈 𝑟, 𝑧 ,  𝑇 = 𝑇 𝑟, 𝑧  
  and the differential equation governing the displacement potential function 𝑈 𝑟, 𝑧  is given as 

       
𝜕2𝑈 

𝜕𝑟2 +
1

𝑟
 
𝜕𝑈 

𝜕𝑟
=  1 + 𝑣 𝑎𝑡  𝑇          (5) 

      𝑈 =
𝜕𝑈 

𝜕𝑟
= 0,    𝑟 = 𝑎  for all time t.                                                                               (6) 

 The stress function 𝜎𝑟𝑟   and  𝜎𝜃𝜃  are given by 

       𝜎𝑟𝑟 =
−2𝜇

𝑟
 
𝜕𝑈

𝜕𝑟
                          (7) 

        𝜎𝜃𝜃 =  −2𝜇
𝜕2𝑈

𝜕𝑟2              (8) 

In the plane state of stress within the plate  

        𝜎𝑟𝑧 =  𝜎𝑧𝑧 =  𝜎𝜃𝑧 = 0                                                                                     (9) 

Temperature 𝑇(𝑟, 𝑧) of the circular plate satisfying heat conduction equation as follows, 

    
𝜕2𝑇

𝜕𝑟2 +
1

𝑟
 
𝜕𝑇

𝜕𝑟
+

𝜕2𝑇

𝜕𝑧2 +  
𝑞

𝑘
=  0         (10) 

  with the conditions 

     
𝜕𝑇

𝜕𝑟
= 0  𝑎𝑡   𝑟 = 𝑎, −𝑕 ≤ 𝑧 ≤ 𝑕        (11)

           

     
𝜕𝑇

𝜕𝑧
= 0  𝑎𝑡 𝑧 = −𝑕, 0 ≤ 𝑟 ≤ 𝑎         (12)    

     𝑇 =  𝑓 𝑟   𝑘𝑛𝑜𝑤𝑛  𝑎𝑡   𝑧 = 𝜉 , −𝑕 ≤ 𝜉 ≤ 𝑕, 0 ≤ 𝑟 ≤ 𝑎       (13)

                                    

 and 

      𝑇 =  𝑔 𝑟   𝑢𝑛𝑘𝑛𝑜𝑤𝑛  𝑎𝑡   𝑧 = 𝑕 , 0 ≤ 𝑟 ≤ 𝑎        (14)

            
where k is the thermal conductivity of the material of the plate, q is the internal heat generation. 

Equations (1) to (14) constitute the mathematical formulation of the problem.  

 

III. SOLUTION 
 To obtain the expression for temperature T ( r, z ), we introduce the finite Hankel transform over the 

variable r and its inverse transform defined as in Ozisik (1968) 

     𝑇  𝛽𝑚 , 𝑧 =   𝑟′ 𝐾0 𝛽𝑚 , 𝑟 
𝑎

𝑟′=0
 𝑇(𝑟, 𝑧) 𝑑𝑟′                           (15)    

      𝑇(𝑟, 𝑧)  =   𝐾0 𝛽𝑚 , 𝑟 ∞
𝑚=1  𝑇  𝛽𝑚 , 𝑧          (16) 
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 where    𝐾0 𝛽𝑚 , 𝑟 =  
 2

𝑎
  
𝐽0 (𝛽𝑚 𝑟)

𝐽0 (𝛽𝑚 𝑎)
             

 and 𝛽1 , 𝛽2 … ..   are roots of the transcendental equation  
     𝐽1 𝛽𝑚𝑎 =  0           (17) 

where  𝐽𝑛  𝑥  is Bessel function of the first kind of order n.  

On applying the finite Hankel transform defined in the Eq. (15) and its inverse transform defined in Eq. (16)  to 

the Eq. (10), one obtains the expression for temperature as   

    𝑇 𝑟, 𝑧 =   2

𝑎

𝐽0 𝛽𝑚 𝑟 

𝐽0 𝛽𝑚 𝑎 
∞
𝑚=1   

–  𝐴 𝛽𝑚 , ξ − 𝐹 𝛽𝑚   
cosh  𝛽𝑚  z+h  

cosh  𝛽𝑚  h+ξ  

−
1

𝛽𝑚

𝑑𝐴 𝛽𝑚 ,−h  

𝑑𝑧

sinh  𝛽𝑚  z−ξ  

cosh  𝛽𝑚  h+ξ  
+ 𝐴 𝛽𝑚 , 𝑧 

                   (18)   

  where 𝐴 β
m

, z   is particular integral of differential Eq. (10) and 𝐹 𝛽𝑚   is Hankel transform of 𝑓 𝑟 . 

The unknown temperature 𝑔 𝑟  can be obtained by substituting 𝑧 = 𝑕 in Eq. (18) as 

      𝑔 𝑟 =   2

𝑎

𝐽0 𝛽𝑚 𝑟 

𝐽0 𝛽𝑚 𝑎 
∞
𝑚=1   

–  𝐴 𝛽𝑚 , 𝜉 − 𝐹 𝛽𝑚   
𝑐𝑜𝑠𝑕 2𝛽𝑚 𝑕 

𝑐𝑜𝑠𝑕 𝛽𝑚  𝑕+𝜉  

−
1

𝛽𝑚

𝑑𝐴 𝛽𝑚 ,−𝑕  

𝑑𝑧

𝑠𝑖𝑛𝑕 𝛽𝑚  𝑕−𝜉  

𝑐𝑜𝑠𝑕 𝛽𝑚  𝑕+𝜉  
+ 𝐴 𝛽𝑚 , 𝑕 

       (19)   

   To obtain displacement potential 𝑈 𝑟, 𝑧  using Eq. (18) and Eq. (5), one obtain, 

       𝑈 𝑟, 𝑧 =
 2

𝑎
 1 + 𝑣 𝑎𝑡  

 𝐽0 𝛽𝑚 𝑟 −𝐽0 𝛽𝑚 𝑎  

𝛽𝑚
2𝐽0 𝛽𝑚 𝑎 

∞
𝑚=1   

  ×  
 𝐴 𝛽𝑚 , ξ − 𝐹 𝛽𝑚   

cosh  𝛽𝑚  z+h  

cosh  𝛽𝑚  h+ξ  

−
1

𝛽𝑚

𝑑𝐴 𝛽𝑚 ,−h  

𝑑𝑧

sinh  𝛽𝑚  z−ξ  

cosh  𝛽𝑚  h+ξ  
+ 𝐴 𝛽𝑚 , 𝑧 

                     (20) 

Now using  Eqs. (18) and (20) in Eq. (7) and (8), one obtains the expressions for stresses respectively as 

    𝜎𝑟𝑟 =
2 2𝜇

𝑎 𝑟
 1 + 𝑣 𝑎𝑡   

𝐽0 ′  𝛽𝑚 𝑟 

𝛽𝑚  𝐽0 𝛽𝑚 𝑎 
∞
𝑚=1  

              ×  
 𝐴 𝛽𝑚 , ξ − 𝐹 𝛽𝑚   

cosh  𝛽𝑚  z+h  

cosh  𝛽𝑚  h+ξ  

−
1

𝛽𝑚

𝑑𝐴 𝛽𝑚 ,−h  

𝑑𝑧

sinh  𝛽𝑚  z−ξ  

cosh  𝛽𝑚  h+ξ  
+ 𝐴 𝛽𝑚 , 𝑧 

        (21) 

    𝜎𝜃𝜃 =  −
2 2𝜇

𝑎 
 1 + 𝑣 𝑎𝑡   

𝐽1 ′  𝛽𝑚 𝑟 

 𝐽0 𝛽𝑚 𝑎 
∞
𝑚=1  

               ×  
 𝐴 𝛽𝑚 , ξ − 𝐹 𝛽𝑚   

cosh  𝛽𝑚  z+h  

cosh  𝛽𝑚  h+ξ  

−
1

𝛽𝑚

𝑑𝐴 𝛽𝑚 ,−h  

𝑑𝑧

sinh  𝛽𝑚  z−ξ  

cosh  𝛽𝑚  h+ξ  
+ 𝐴 𝛽𝑚 , 𝑧 

       (22) 

 

 

IV. SPECIAL CASE AND NUMERICAL CALCULATIONS 
1. 𝑓 𝑟 =  𝑟2          (23) 

  applying  finite Hankel transform as defined in eq.(15) to the eq.(23), one obtains 

  𝐹  𝛽𝑚  =
 2  𝑎

 𝐽0 𝛽𝑚 𝑎  
 𝑎J1 βm

a − 2𝐽2 𝛽𝑚𝑎         

2. 𝑞 𝑟, 𝑧 =  𝛿 𝑟 − 𝑟0 𝛿 𝑧 − 𝑧0  

    𝑞    𝛽𝑚 , 𝑧 =
 2 

𝑎  
𝑟0𝛿 𝑧 − 𝑧0 

𝐽0 𝛽𝑚 𝑟0 

 𝐽0 𝛽𝑚 𝑎 
              

where 𝛿 𝑟  is well known dirac delta function of argument r.                                 

𝑎 = 1𝑚, 𝑕 = 0.1𝑚, 𝑟0 = 0.5𝑚 𝑎𝑛𝑑 𝑧0 = 0.05𝑚. 

 

4.1  Material Properties 
The numerical calculation has been carried out for aluminum (pure) plate with the material properties defined as 

        Thermal diffusivity 𝛼 = 84.18× 10−6  m2s−1 ,  
         Specific heat 𝑐𝜌 = 896 J/kg,    

         Thermal conductivity k = 204.2 W/m K, 

         Shear modulus 𝐺 = 25.5 𝐺 pa, 
         Poisson ratio 𝜗 = 0.281,           
 

4.2  Roots of transcendental equation 

 The 𝛽1 = 3.8317,  𝛽2 = 7.0156,  𝛽3 = 10.1735,  𝛽4 = 13.3237,  𝛽5 = 16.4704,  𝛽6 = 19.6159 are the 

roots of transcendental equation 𝐽1 𝛽𝑚𝑎 =  0. The numerical calculation and the graph has been carried out 

with the help of mathematical software Mat lab.  
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V. DISCUSSION 
 In this problem, thin clamped circular plate is considered which is subjected to arbitrary known interior 

temperature and determined the expressions for unknown temperature, displacement and stresses. As a special 

case mathematical model is constructed for 𝑓 𝑟 =  𝑟2 and performed numerical calculations. The thermoelastic 
behavior is examined such as temperature, displacement and stresses in a thin clamped circular plate with 

internal heat generation. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Temperature 𝑇(𝑟, 𝑧)  in radial direction 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig.  2 Displacement 𝑈(𝑟, 𝑧)  in radial direction 
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Fig.  3 Radial stress σrr  in radial direction 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4 Angular stress σθθ in radial direction 

 

From Fig. 1 Due to internal heat generation temperature is increasing for 0 ≤ 𝑟 ≤ 0.2, 0.4 ≤ 𝑟 ≤ 0.6  and 

decreasing for 0.2 ≤ 𝑟 ≤ 0.4, 0.6 ≤ 𝑟 ≤ 0.8 along radial direction. The overall behavior of temperature is 

decreasing and it is inversely vary with arbitrary known interior temperature along radial direction. 

From Fig. 2 Due to internal heat generation displacement is decreasing for 0 ≤ 𝑟 ≤ 0.2, 0.4 ≤ 𝑟 ≤ 0.6  and 

increasing for 0.2 ≤ 𝑟 ≤ 0.4, 0.6 ≤ 𝑟 ≤ 0.8  along radial direction.  The overall behavior of displacement is 
decreasing and it is inversely vary with arbitrary known interior temperature along radial direction. 

From Fig. 3 Due to internal heat generation the radial stress is decreasing for 0.2 ≤ 𝑟 ≤ 0.6 and increasing for 

0.6 ≤ 𝑟 ≤ 0.8  along radial direction. The overall behavior of radial stress is compressive and it is inversely 

vary with arbitrary known interior temperature along radial direction. 

From Fig. 4 Due to internal heat generation the angular stress is increasing for 0.2 ≤ 𝑟 ≤ 0.4, 0.6 ≤ 𝑟 ≤ 0.8 

and decreasing for 0.4 ≤ 𝑟 ≤ 0.6 along radial direction. The overall behavior of angular stress is tensile and it 

is inversely vary with arbitrary known interior temperature along radial direction.  
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VI. CONCLUSION 
Due to internal heat generation temperature and displacement are decreasing and it is inversely vary with 

arbitrary known interior temperature along radial direction. Due to internal heat generation the radial stresses are 

compressive and the angular stresses are tensile and It is inversely vary with arbitrary known interior 

temperature along radial direction. 

 The results obtained here are useful in engineering problems particularly in the determination of state of stress 

in a thin clamped circular plate, base of furnace of boiler of a thermal power plant and gas power plant. 
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