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ABSTRACT: This work presents a study of two finite element solutions using either linear triangular elements 

or bilinear rectangular elements. The mesh of triangular elements is obtained by dividing each quadrilateral 

element into two triangular elements or vice versa, the mesh of rectangular elements is obtained by merging two 

adjacent triangular elements. To assess performance, we use two dimensional steady state problems in an L- 

shaped plate as a test case.By comparing the two finite element solutions using linear triangular elements or 

bilinear rectangular elements, we observe that the rectangular elements produced more accurate solution for 

the temperature distribution for the L-shaped plate.  
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1. INTRODUCTION 
Finite element method enjoys a firm theoretical foundation that is mostly free of ad hoc schemes and 

heuristic numerical approximations, thereby inspiring confidence in the physical relevance of the solution 

Pozrikidis (2014). A very popular approach for discretizing Partial Differential Equations (PDE), the finite 

element method, is based on variational forms (Adams and Fournier (2003); Zuger, (2013) and Evans 

(2010)).The crucial element in this method is that it uses a variational problem over a domain of the PDE.The 

practical implementation of the Finite element method(FEM) involves the determination of three ingredients 

that are closely related: nodes, elements, and basis functions. FEM nodes are points inside the domain and on its 

boundary that are used in the definition of the basis functions. The elements are relatively small subdivisions of 

the domain   whose size and geometry is determined by the node locations (e.g., such that nodes coincide with 

element vertices).The FEM utilizes discrete elements to obtain the approximate solution of the governing 

differential equation. The final FEM system equation is constructed from the discrete element equations. 

Aklilu, (2011) studied finite element and finite difference methods for elliptic and parabolic differential 

equations. He discussed the distinctiveness of the solution of an elliptic equation which was dependent on the 

boundary condition.He concluded that the number of elements has effect in quality of the FEM solution. 

Pal and Kristian, (2004) worked on implementation of Finite Element Method for Poisson equation on 

a regular domain. Finite Elements Method for the Poisson equation was implemented using MATLAB,the use 

of GUI makes the program more handy because the linear system resulting from the FEM problem is sparse, 

symmetric and positive definite, the use of the preconditioned conjugate gradient method reduces the total 

required computational time.It was concluded that the FEM solution is obviously converging to the true 

solution. 

Peiro and Sherwin, (2005) who studied finite difference, finite element and finite volume methods for 

partial differential equations asserted that the discretization of linear elliptic equations with either Finite 

Difference, Finite Element or Finite Volume methods leads to non-singular systems of equations that can easily 

solved by standard methods of solution. 

Agbezuge, (2012) studied finite element solution of the Poisson equation with Dirichlet boundary 

conditions in a rectangular domain. The concepts utilized in solving the problem are weak formulation of the 

Poisson Equation, creation of a Finite Element Model on the basis of an assumed approximate solution, creation 

of 4-node rectangular elements by using interpolation functions of the Lagrange type, assembly of element 

equations, solution and post-processing of the results. 
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Patil and Prasad, (2013) studied numerical solution for two dimensional Laplace equation with 

Dirichlet boundary conditions in a rectangular domain. Numerical techniquesadopted are finite difference 

method (FDM),finite element method and Markov chain method (MCM) using spreadsheets. The numerical 

solutions obtained by FDM, FEM and MCM are compared with exact solution to check the accuracy of the 

developed scheme. They concluded that the power of the FEM becomes more evident, because the Finite 

Difference method will have much more difficulty in solving problems in a domain with complex geometries. 

The motivation behind this work stems from the perception that, approximately the same element size, 

a mesh of rectangular elements would consist of approximately half as many elements as a mesh of triangular 

elements (a rectangular element may be found from merging two adjacent triangular elements). Furthermore, the 

number of edges in the rectangular mesh is approximately two-thirds that of the triangular mesh. For weighted 

residual methods, evaluating the boundary integral is one of the major computational costs. From these 

observations, one might expect that the use of quadrilateral elements may improve the computational efficiency 

of the schemes. The purpose of this paper is to compare the two finite element solutions using either linear 

triangular elements or bilinear rectangular elements.  

In this paper, weak formulation of a weighted residual method for Laplace’s equation is first 

summarized. Subsequently, discretization of the domain is performed using selected two-dimensional finite 

elements. We also discuss the strategy we to efficiently evaluate the elemental matrices required in the scheme. 

Lastly, we present the results of numerical solutions on a temperature distribution for L-shaped plate in Section 

3, and draw some conclusions of the study in Section 4. 

 

2.METHODOLOGY 

2.1 The Governing Equation  

The use of high numerical methods for the computational solution of Laplacian problems is significant in many 

fields of physics and engineering (Durojaye et al., 2019). The governing differential equation for Laplace’s 

equation is 

2.1 

while Poisson’s equation is 

2.2 

We shall consider Poisson’s equation in the following formulation.                                   

in  

for the two-dimensional domain Ω. The boundary conditions are 

on the boundary 2.3 

and 

on the boundary 2.4 

where𝑢𝐷 and g denote known variable and flux boundary conditions, and n in Eq. (2.4) is the outward normal 

unit vector at the boundary.  

The integral of weighted residual of the partial differential equation and boundary condition is 

2.5
 

In order to develop the weak formulation of (2.5), integration by part is applied to reduce the order of 

differentiating within the integral. Manipulating the first integral on the right hand side of Eq. (2.5), we obtain, 

2.6 

in which nxis the x-component  and nyis the y-component of the unit vector which is assumed to be positive in 

the outward direction. Since the boundary integral can be written as  

2.7 

Now, we can rewrite Eq. (2.6) as 
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2.8 

For simplicity, the symbol to denote the line integral around a closed boundary is replaced by We use 

Eq. (2.8) to Eq. (2.5) results in 

2.9 

Eq. (2.9) represents the weak formulation of equation (2.2). The first volume integral of Eq. (2.9) becomes a 

matrix term while the second volume integral and the line integral become a vector term. 

 

2.1Discretisation of the Domain 

For the purpose of this work, the problem domain is discretized into finite elements using linear triangular 

elements and bilinear rectangular elements. 

 

2.2 Linear Triangular Element 

The discretization of the domain in Eq. (2.2) is performed using selected 2-D finite elements. Linear triangular 

element has three nodes at the vertices of the triangle and the variable interpolation within the element is linear 

in x and y which is 

2.10 

where is the constant to the determined. The interpolation function, Eq. (2.10), represents the nodal variables 

at the three nodal points. The values of x and y are derived by substituting it at each nodal point gives 

2.11 

where and  are the coordinate values at the ith node and uiis the nodal variable. 

Inverting the matrix and rewriting Eq. (2.11) give       

       2.12 

where 

2.13 

 

The value of element node numbering in the counter-clockwise direction will be positive and negative 

otherwise. The element nodal sequence must be in the same direction for every element in the domain. 

Substitution of Eq. (2.12) into Eq. (2.10) we have             

2.14 

where is the shape function for the linear triangular element and it is given below as: 

2.15 

2.16 

2.17 

These shapes functions satisfy the conditions 
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2.18 

and    2.19 

Here, is the Kronecker delta. That is, 

2.20 

 

2.3 Element Matrix 

The element matrix is computed as derived below: 

 

2.21 

where is the element domain. 

Carrying out the integration after substituting the shape functions Eq (2.15) through (2.18) into Eq. (2.21) we 

have 
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, , 2.28 

The integral term of the other domain to be evaluated in Eq. (2.2) is 

2.29 

The computation of this integral over each linear triangular element results in a column vector which is  
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2.30 

 

2.4 Bilinear Quadrilateral Element 

The shape functions for the rectangular element can be derived from the interpolation function: 

2.31 

This function is linear in both x and y. The shape functions can be derived by applying the same procedure as 

used above results in 

2.32 

         2.33 

         2.34 

           2.35 

where 2a and 2b are the length and height of the element, respectively.  

 

2.5 Element Matrix Using Bilinear Shape functions. 

The element matrix is computed as derived below: 

 

2.36 

where is the bilinear shape functions.   

Carrying out the integration for all terms, we have the following element matrix for bilinear rectangular element 
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2.38 

2.39 

2.40 

2.41 

, , , , , 2.42 

The computation of this integral over each linear rectangular element results in a column vector which is  

2.43 

The boundary integral in Eq. (1.9) is 

2.44 

Here denotes the natural boundary and shows the element boundary. The is taken over the 

elements which are located at the boundary of the domain and whose elements are subjected to natural boundary 

condition. Linear one- dimensional shape functions are used to interpolate the element boundary. The boundary 

integral along the element boundary becomes 

2.45 

where : length of the element boundary. 

 

3. NUMERICAL SOLUTIONS 
In this section we solved some tests problems for two dimensional steady state problems. Both linear triangular 

and bilinear rectangular elements are used. 

Test problem 1  

Compute the temperature distribution for the L-shaped plate in Fig. 3.1. The boundary condition is also in the 

figure. 

Solution 

u(x, y) is the steady state temperature distribution in the domain. Fig. 3.1 has the boundary values given in that 

figure. 
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Figure 3.1 

In order to solve this equation the Finite Element Method triangular elements were used, Table 1 shows 

the coordinates of nodes and the node numbers of the triangular subregions. We located 22 boundary points and 

14 interior points, number them and divided the domain into 48 triangular subregions as depicted in Fig. 3.1.   

Table 2 showing coordinates of nodes and the node numbers of the subregions.    
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Table 2 Coordinates of Nodes and the Node Numbers of the Subregions from Fig. 3.1 

 
 

Assembly of Global Matrix   

The global coefficient matrix is determined by the coordinates of the vertices of the corresponding element. 

Since there are 36 nodes, the global coefficient matrix will be a 36 x 36 matrix. The assembly procedure was 

executed by writing a short Matlab® code, whose output is shown below: 

For typical triangular element: 

 

The global coefficient matrix for temperature distribution on the L-shaped plate in Fig. 4.1 with an insulated 

upper and right hand side edge was assembled as follows: 

Coordinates of Nodes Node Numbers of Subregions

Node x y ElementNode1 Node2 Node3

1 0 0 1 1 2 9

2 5 0 2 2 3 10

3 10 0 3 3 4 11

4 15 0 4 4 5 12

5 20 0 5 5 6 13

6 25 0 6 6 7 14

7 30 0 7 1 9 8

8 0 5 8 2 10 9

9 5 5 9 3 11 10

10 10 5 10 4 12 11

11 15 5 11 5 13 12

12 20 5 12 6 14 13

13 25 5 13 8 9 16

14 30 5 14 9 10 17

15 0 10 15 10 11 18

16 5 10 16 11 12 19

17 10 10 17 12 13 20

18 15 10 18 13 14 21

19 20 10 19 8 16 15

20 25 10 20 9 17 16

21 30 10 21 10 18 17

22 0 15 22 11 19 18

23 5 15 23 12 20 19

24 10 15 24 13 21 20

25 15 15 25 15 16 23

26 20 15 26 16 17 24

27 25 15 27 17 18 25

28 30 15 28 18 19 26

29 0 20 29 19 20 27

30 5 20 30 20 21 28

31 10 20 31 15 23 22

32 15 20 32 16 24 23

33 0 25 33 17 25 24

34 5 25 34 18 26 25

35 10 25 35 19 27 26

36 15 25 36 20 28 27

37 22 23 30

38 23 24 31

39 24 25 32

40 22 30 29

41 23 31 30

42 24 32 31

43 29 30 34

44 30 31 35

45 31 32 36

46 29 34 33

47 30 35 34

48 31 36 35
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[K]=

 
 

The assembled source and flux terms 
{K}=[20,50,50,50,50,50,0,20,0,0,0,0,0,0,20,0,0,0,0,0,0,20,0,0,300,300,300,0

,20,0,0,300,20,0,0,300]' 

The assembled equation is of the form 

[K]{U} = {F} 

Having the Essential Boundary conditions and Natural boundary conditions on the boundary of the domain, the 

nodal solution vector should be of the form 
{U}=[20,50,50,50,50,50,U7,20,U9,U10,U11,U12,U13,U14,20,U16,U17,U18,U19,U20,

U21,20,U23,U24,300,300,300,U28,20,U30,U31,300,20,U34,U35,300] 

so that the unknown values of {U} occur at global nodes 7,  9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 

28, 30, 31, 34 and 35.  

Note that because of the derivative boundary condition, we have to account for the six unknown temperatures 

along the plate’s upper and right hand side edge. The finite element solution of this equation yields  

 

 
 

 

Test problem 2  

We solve the same test problem using bilinear rectangular elements.  

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1 0 0 0 0 0 -1 4 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1 0 0 0 0 0 -1 4 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 -1 4 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0 0 0 -1 4 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -1 0 0 0 0 0 -1 4 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -0.5 0 0 0 0 0 -1 2 0 0 0 0 0 0 -0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 4 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 4 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 4 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 4 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 4 -1 0 0 0 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -0.5 0 0 0 0 0 -1 2 0 0 0 0 0 0 -0.5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 4 -1 0 0 0 0 0 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 4 -1 0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 4 -1 0 0 -1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 -1 4 -1 0 0 -1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -0.5 2 -0.5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0 -0.5 2 -0.5
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Node x y Solution

7 30 0 95.07285

9 5 5 59.09349

10 10 5 89.06929

11 15 5 113.0949

12 20 5 125.0569

13 25 5 131.303

14 30 5 140.1457

16 5 10 77.30467

17 10 10 134.0888

18 15 10 188.2534

19 20 10 205.8299

20 25 10 210.0092

21 30 10 202.904

23 5 15 96.03645

24 10 15 181.7277

28 30 15 251.452

30 5 20 105.1135

31 10 20 196.7855

34 5 25 107.6319

35 10 25 200.3007
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Figure 3.2 

 

In order to solve this equation the Finite Element Method rectangular elements were used, Table 3.2 

shows the node numbers of the rectangular subregions. We located 22 boundary points and 14 interior points, 

number them and divided the domain into 24 rectangular subregions as depicted in Fig. 3.2.   

Table 3.2 showing node numbers of the Sub-regions. 

 

 
 

Assembly of Global Matrix   

The global coefficient matrix is determined by the coordinates of the vertices of the corresponding 

element. Since there are 36 nodes, the global coefficient matrix will be a 36 x 36 matrix. The assembly 

procedure was executed by writing a short Matlab® code, whose output is shown below. 

 

 

 

 

 

 

 

Node Numbers of Subregions

Element Node 1 Node 2 Node 3 Node 4

1 1 2 9 8

2 2 3 10 9

3 3 4 11 10

4 4 5 12 11

5 5 6 13 12

6 6 7 14 13

7 8 9 16 15

8 9 10 17 16

9 10 11 18 17

10 11 12 19 18

11 12 13 20 19

12 13 14 21 20

13 15 16 23 22

14 16 17 24 23

15 17 18 25 24

16 18 19 26 25

17 19 20 27 26

18 20 21 28 27

19 22 23 30 29

20 23 24 31 30

21 24 25 32 31

22 29 30 34 33

23 30 31 35 34

24 31 32 36 35
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For typical rectangular element: 

 

The global coefficient matrix was assembled as follows: 

[K] = 

 
 

The assembled source and flux terms 
{K}=[20,50,50,50,50,50,0,20,0,0,0,0,0,0,20,0,0,0,0,0,0,20,0,0,300,300,300,0

,20,0,0,300,20,0,0,300]' 

The assembled equation is of the form 

[K]{U} = {F} 

Having the Essential Boundary conditions and Natural boundary conditions on the boundary of the domain, the 

nodal solution vector should be of the form 

{U}=[20,50,50,50,50,50,U7,20,U9,U10,U11,U12,U13,U14,20,U16,U17,U18,U19,U20,U21,20,U23,U24,300,3

00,300,U28,20,U30,U31,300,20,U34,U35,300] 

so that the unknown values of {U} occur at global nodes 7,  9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 24, 

28, 30, 31, 34 and 35.  

The finite element solution of this equation yields  

 

0.6667 0.1667 0.3333 0.1667

0.1667 0.6667 0.1667 0.3333

0.3333 0.1667 0.6667 0.1667

0.1667 0.3333 0.1667 0.6667

ek

   
 
  
        
 
   

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

-0.333 -0.333 -0.333 0 0 0 0 -0.333 2.6667 -0.333 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -0.333 -0.333 -0.333 0 0 0 0 -0.333 2.6667 -0.333 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -0.333 -0.333 -0.333 0 0 0 0 -0.333 2.6667 -0.333 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 -0.333 -0.333 -0.333 0 0 0 0 -0.333 2.6667 -0.333 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 -0.333 2.6667 -0.333 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 -0.333 -0.167 0 0 0 0 0 -0.333 1.3333 0 0 0 0 0 -0.333 -0.167 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 -0.333 2.6667 -0.333 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 -0.333 2.6667 -0.333 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 -0.333 2.6667 -0.333 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 -0.333 2.6667 -0.333 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 -0.333 -0.167 0 0 0 0 0 -0.333 1.3333 0 0 0 0 0 -0.333 -0.167 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.167 -0.333 0 0 0 0 0 1.3333 -0.333 0 0 0 0 0 -0.167 -0.333 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 -0.333 2.6667 -0.333 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 -0.333 2.6667 -0.333 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 -0.333 2.6667 -0.333 0 -0.333 -0.333 -0.333 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.333 -0.333 -0.333 0 0 0 0 -0.333 2.6667 -0.333 0 -0.333 -0.333 -0.333
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.333 -0.333 -0.333 0 -0.167 1.3333 -0.167 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.333 -0.333 -0.333 0 -0.167 1.3333 -0.167
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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By comparing the two finite element solutions using either linear triangular element or bilinear rectangular 

elements as shown below, we see that the rectangular elements produced more accurate solution in the present 

test problem. 

 

 
 

4. CONCLUSION 
A primary basic approach is to observe if the numerical solutions of Finite Element Method using the 

linear triangular elements is better than bilinear rectangular elements on a temperature distribution for the L-

shaped plate. Simple elements such as linear triangles and bilinear rectangular were employed for the finite-

element mesh in two dimensions. By comparing the two finite element solutions using linear triangular elements 

or bilinear rectangular elements, we observe that the rectangular elements produced more accurate solution for 

the temperature distribution for the L-shaped plate. Some slight differences can be observed in both methods, 

Node x y Solution

7 30 0 115.6086

9 5 5 57.40073

10 10 5 88.53091

11 15 5 110.4661

12 20 5 123.6836

13 25 5 137.0492

14 30 5 138.3358

16 5 10 75.88347

17 10 10 134.7914

18 15 10 179.7056

19 20 10 207.0169

20 25 10 205.231

21 30 10 206.5176

23 5 15 93.1887

24 10 15 173.156

28 30 15 229.2449

30 5 20 104.1727

31 10 20 197.506

34 5 25 108.0987

35 10 25 201.432

Finite Element Solutions  Using Linear and Bilinear Elements

Node x y Triangular element Rectangular elements

1 0 0 20.0000 20.0000

2 5 0 50.0000 50.0000

3 10 0 50.0000 50.0000

4 15 0 50.0000 50.0000

5 20 0 50.0000 50.0000

6 25 0 50.0000 50.0000

7 30 0 95.0729 115.6086

8 0 5 20.0000 20.0000

9 5 5 59.0935 57.4007

10 10 5 89.0693 88.5309

11 15 5 113.0949 110.4661

12 20 5 125.0569 123.6836

13 25 5 131.3030 137.0492

14 30 5 140.1457 138.3358

15 0 10 20.0000 20.0000

16 5 10 77.3047 75.8835

17 10 10 134.0888 134.7914

18 15 10 188.2534 179.7056

19 20 10 205.8299 207.0169

20 25 10 210.0092 205.2310

21 30 10 202.9040 206.5176

22 0 15 20.0000 20.0000

23 5 15 96.0364 93.1887

24 10 15 181.7277 173.1560

25 15 15 300.0000 300.0000

26 20 15 300.0000 300.0000

27 25 15 300.0000 300.0000

28 30 15 251.4520 229.2449

29 0 20 20.0000 20.0000

30 5 20 105.1135 104.1727

31 10 20 196.7855 197.5060

32 15 20 300.0000 300.0000

33 0 25 20.0000 20.0000

34 5 25 107.6319 108.0987

35 10 25 200.3007 201.4320

36 15 25 300.0000 300.0000
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especially when there is a great point charge variation. This finding corroborates with Pozrikidis (2014) that the 

discretizing process of mesh can influence the results, and rectangular element produced accurate results when 

compared with triangular elements. Similarly to the findings Ezeh and Enem (2012) on comparative study on 

use triangular and rectangular finite elements in analysis of deep beam, she concluded that results of the analysis 

show that the use of rectangular elements yielded results that are closer to the exact solutions than the triangular 

element model.   
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