American Journal of Engineering Research (AJER)	2020
American Journal of Engineering Res	earch (AJER)
e-ISSN: 2320-0847 p-ISS	N:2320-0936
Volume-9, Issue	-3, pp-198-209
	www.ajer.org
Research Paper	Open Access

Evaluation of Network Reliability Investments Costs and Resultant Electricity Pricing in Nigeria.

A.A Dahunsi¹, A.O Ibe² and U.A. Kamalu³

1Electrical and Electronic department, university of Port Harcourt, Nigeria 2Electrical and Electronic department, university of Port Harcourt, Nigeria 3Electrical and Electronic department, university of Port Harcourt, Nigeria Corresponding author: A.A Dahunsi

ABSTRACT: This publication evaluates network reliability investments costs and resultant electricity pricing in Nigeria. It explores the interrelationship between optimal reliability, cost of investment and resultant electricity pricing using cost benefit approach. Five feeders in Port Harcourt distribution company which are Trans Amadi , Abuloma, Imiringi II, Itu and Amika 33kv feeders was selected for this study. These selected feeders were mapped and load flow studies was carried out using Electrical Transient and Analysis Program (ETAP). Consequently network reinforcement projects was proposed using reliability and deterministic approach for areas of identified weakness as revealed by the study. The reliability indices were calculated before and after the reinforcement projects. The reliability indices showed an improvement of 80 percent across the five selected feeders with varying associated cost of investment. In line with the cost of investment using reliability approach energy pricing for Trans Amadi 33Kv feeder was estimated as \$62.12, Abuloma as \$75.51, Imiringi II as \$75.44, Amika as \$71.75 and Itu as \$69.51. Using deterministic approach, the energy pricing for Trans Amadi 33Kv feeder was estimated as №64.14, Abuloma as №75.67, Imiringi II as №75.69, Amika as \$71.81 and Itu as \$69.81. This result showed a close margin in the determined pricing for reliability approach and pricing for reliability and deterministic approach combined. However, the combined reliability and deterministic approach presents a higher reliability. Hence, it was concluded that reliability and deterministic approach combined should be considered as the best option. In view of the foregoing, it is recommended that regulatory bodies should allow distribution companies charge a cost reflective tariff according to the reliability and quality of power delivered.

KEYWORD: Electrical Transient and Analysis program, Cost reflective tariff, Bill of engineering measurement, System Average Interruption Duration Index, System Average Interruption Frequency Index, Customer Average Interruption Duration Index, Expected energy not supplied.

Date of Submission: 01-03-2020

Date of acceptance: 16-03-2020

I. INTRODUCTION

In power systems operation and planning, reliability generally refers to maintaining the continuity of energy supply to the customer [1]. For the fact that their primary responsibility lies on continuity of power supply, power systems are made to overcome possible outages and failures in a way that customers can carry out their daily activities even during contingency events. Since investing in generation units and transmission grids is capital intensive, long term planning becomes inevitable and unavailability signifies energy supply interruption for a large number of customers, they were the actual interests behind reliability analyses in the time past [2]. Nowadays, due to the rapid increase in energy demand and primary energy prices and also when efficient system operation is imperative. The main idea behind reliability analyses is relocating to distribution networks, as they became the most vulnerable part of power system. In actual sense, considerable amount of investments is yet to be done in the system. More than 90% of all customer reliability issues and costs take prevalence and therefore, it is imperative to design reliable distribution system. The investment needs for power sector imply that even small improvements in efficiency will lead to significant savings and this also have impact on tariff.

Today emphasis on economic efficiency in the power sector, particularly in the aspects of marginal cost pricing and improved tariff policy, is welcome and long overdue. But the topic of electric power system

reliability, or dependable quality of electricity service, has previously received detailed treatment only from the supply side, using engineering models and analysis. The economic effect of the reliability of electricity supply on consumers has been examined in a more general and descriptive way. Thus, the traditional design and planning of power systems has been based on the principle of minimizing the supply costs needed for a given load at a specified level of reliability. Increasingly, economists are realizing that even the most sophisticated planning models for least-cost expansion of power systems are usually developed with respect to arbitrary standards of supply reliability. These standards are derived from past practice and vague notions surrounding the quality of service that the electricity consuming public would accept. Investigators have generally jettisoned the effects on the part of demand that relate to the economic worth of reliability. The problems involved in measuring the economic benefits of improved quality of service were the main reasons which gave rise to the neglect.

According to [3], the reliability of supply is an outcome of the standards and processes by which the power system is operated, planned and developed. This implies that efficient long term and short term plans that balancescost, capacity, performance and reliability is required for the success a power distribution company. Thedevastating consequencesofmajorpower outageareoneproofofhowheavilydependentsocietyis onacontinuous supplyofelectricity. Generation, transmission and distributionnetworks as a system, complextechnical humans.Thereliability is one of the most systemscreated by demandsonthistechnicalinfrastructurearehighand, irrespective of itscomplexnature, it is inseveral cases anextremely reliable system. However, acompletely reliable system is impossible toobtain, and acertain level of of powerhastobeaccepted. While underinvestmentsinreliability interruption account for an unacceptable number of power interruptions, over investments give rise to too high costs for society. The challengeistofind economicallyadequatelevelofreliability. This approach to reliability will address the above weakness by considering reliability as a variable to be optimized rather than arbitrary imposed standard. To achieve this goal, a cost -benefit approach will be adopted to evaluate the inherent tradeoff between the increase in power system supply costs required to obtain a higher-level reliability and corresponding decline in outage cost which implies economics cost incurred by customers due to power shortages [4]. In order word, optimum reliability level, which maximizes the net benefits of constant electricity supply should be determined at the point where the marginal increase in system supply costs due to reliability increase are actually offset by the marginal decrease in outage costs.

II. RESEARCH FLOW PROCESS

This is the most primary representation of the research methodology which depicts the entire process flow of this research work. It is a multiple step process with steps interlinking with the other in a continuous flow to achieve the end result of this work. The vivid research flow process is as shown below.

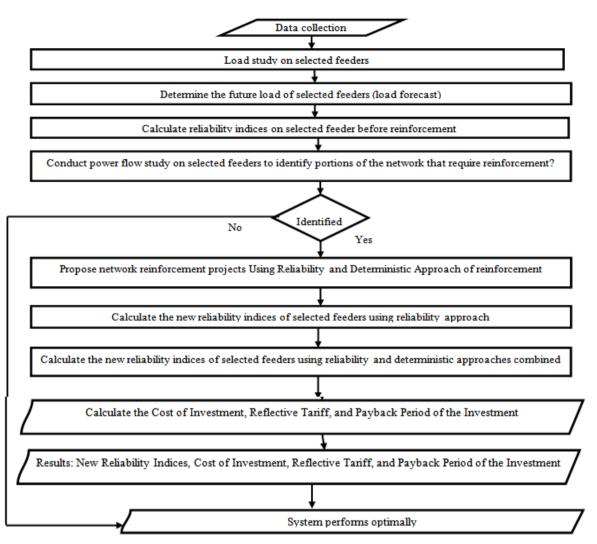


Figure 3.1 Process flow diagrams

2.1 Data Collection

In this work, eight-year data of feeder interruption frequency and duration (such as fault reports, interruptions and hourly load reading) was collected from the existing Port Harcourt electricity distribution (PHED) dispatch center and Network Status Information System (NSIS), for both the commercial and residential feeders. This data was collected for the selected areas of study within the Port Harcourt, Bayelsa, Akwa-Ibom and Cross River metropolis. The data was collected in terms of monthly load consumption data from January to December for each year which was processed and screened to obtain the annual maximum load consumption for the years on each feeder under study. See appendix A for the details of the data collected.

2.2 Power System Study on Selected Feeders

Power System Study which is the first paramount study was conducted on the feeders to determine their performance under various loading conditions. It involves determining the performance under present load and also the forecasted load. This study was carried out on the five feeders under study as shown below.

2.2.1 Feeder load demand study

The historical data collected was analyzed, the average and maximum load was determined. The installed capacity of each feeder, the route length, population size, conductor size and availability was fed into excel software tool for statistical analysis.

2.2.2 Feeder load determination (forecast)

The load forecast which is a technique used by power companies to predict the power needed is used to forecast the future demand of electricity for the area under study using regression analysis method of forecasting

[6]. The raw data from appendix A was analyzed and summary to table 3.1 below. This Forecast was based on historical data from 2010 till 2017. After careful examination of the data, a quadratic regression model was applied on it. The quadratic regression model is a hybrid model that applies a time series and time trend modeling approach blended with regression analysis. These values are substituted into the equation to determine the base load of the individual feeders and then their forecasted load. The forecasted load that is gotten is an important criterion that will be considered during network reinforcement.

FEEDERS	2010	2011	2012	2013	2014	2016	2015	2017
Trans Amadi	21.5	19.8	23.0	19.5	20.6	24.1	24.6	19.9
Abuloma	9.5	6.2	15.0	10.0	12.0	15.4	10.8	12.0
Imiringi II	19.3	21.0	16.6	19.3	20.4	20.0	20.3	19.8
Itu/Oku Iboku	4.6	6.2	8.5	7.0	7.9	8.0	8.1	8.2
Amika	14.0	20.0	30.0	47.0	29.8	29.8	34.2	29.3

Table: 2.1: Historical maximum load on the selected feeders

According to Saravanan and others (2012), one major advantage of forecasting load through the use of regression analysis is that it is easy to understand the input and output variables in terms of their relationship. Using regression analysis method of load forecast [3]. $p(j) = a_1 + a_2 w_i + a_3 w_i^2$ 2.1

Where, p(j) is the maximum annual load consumption forecast for any year in future measured in Megawatts (MW). w_i is any particular year required whose load consumption is to be forecasted having integral values of j = 1, 2, 3, - - k, (k+1), (k+2), (k+3)... (k+n)

 $a_1k + a_2 \sum_{j=1}^k w_j + a_3 \sum_{j=1}^k w_j^2 = \sum_{j=1}^k p_j$ 2.2 $a_{1}\sum_{j=1}^{k}w_{j} + a_{2}\sum_{j=1}^{k}w_{j}^{2} + a_{3}\sum_{j=1}^{k}w_{j}^{3} = \sum_{j=1}^{k}w_{j} p_{j}2.3$ $a_{1}\sum_{j=1}^{k}w_{j}^{2} + a_{2}\sum_{j=1}^{k}w_{j}^{3} + a_{3}\sum_{j=1}^{k}w_{j}^{4} = \sum_{j=1}^{k}w_{j}^{2} p_{j}$ 2.4

2.2 Calculation of feeder reliability indices before reinforcement

Assessment and analysis along with the computation of the system performance was done in two segments; measuring of the past performance of Trans Amadi, Abuloma, Amika, Imiringi II and Itu 33kv feeders respectively and also predicting the future reliability of all the five Feeders when reinforcement project is done. Feeder reliability indices for the selected feeders were calculated before network reinforcement using standard reliability indices formula below.

a. System Average Interruption Duration Index:

 $SAIDI = \frac{SUM \text{ of ALL CUSTOMER INTERRUPTION DURATIONS}}{SAIDI = \frac{SUM \text{ of ALL CUSTOMER INTERRUPTION DURATIONS}}{SAIDI = \frac{SUM OF ALL CUSTOMER INTERRUPTION DURATIONS}{SAIDI = \frac{SUM OF ALL CUSTOMER INTERRUP$ TOTAL NUMBER OF CUSTOMERS SERVED $SAIDI = \frac{\sum_{i=1}^{n} \lambda_i N_i}{\sum_{i=1}^{n} N_i} 2.5$ b. System Average Interruption Frequency Index: $SAIFI = \frac{TOTALNUMBEROFCUSTOMERINTERRUPTION}{TOTALNUMBEROFCUSTOMERINTERRUPTION}$ TOTALNUMBEROFCUSTOMERSSERVED $SAIFI = \frac{\sum_{i=1}^{n} U_i N_i}{\sum_{i=1}^{n} N_i} 2.6$ c. Customer Average Interruption Duration Index $CAIDI = \frac{SUM \text{ of ALL CUSTOMER INTERRUPTION DURATIONS}}{Mathematical Structure in the second struc$ TOTAL NUMBER OF CUSTOMER INTERRUPTIONS $CAIDI = \frac{SAIDI}{SAIFI} = \frac{\sum_{i=1}^{n} \lambda_i N_i}{\sum_{i=1}^{n} N_i} / \frac{\sum_{i=1}^{n} U_i N_i}{\sum_{i=1}^{n} N_i} 2.7$ d. ENS- Energy Not Supplied ENS = $\sum_{i=1}^{n} U_i \lambda_i \times 10002.8$ Where λ_i = Total number of customer's interruption duration

N_i is number of customers per load

 $U_i = Total$ number of customer's interruption

2.3 Power Flow Study on Selected Feeders

The five sample 33kv feeder study was mapped for the purpose of developing the feeder network schematic. Feeder mapping which entails proper geo-referencing and inventory of all network components (Generators, lines, cables, transformers, breakers, fuse, ring main unit etc.) was carried out on the selected feeder using GPS receiver. Power flow study was carried out on the feeders using the developed network schematic to identify areas on the network that requires reinforcement using Electrical Transient and Analysis Program (ETAP).Power flow study was carried out on the distribution networks using the produced network schematic to identify area that required reinforcement for reliability improvement. The network asset inventory and power system studies conducted on the selected feeders revealed some defects which has direct impact on the general system availability. Some of the observed network flows are excessive voltage drop, overloading, phase imbalance etc. which all violate performance criteria which are thermal limit, voltage limit and power factor limit.

2.3.1 Overloading

Consequent upon the studies conducted, it was discovered that Trans Amadi, Imiringi II, Itu and Amika 33kv feeders are overloaded (thermal limit of performance criteria is violated) and most of the distribution transformers on these feeders are also over loaded which explain the reason for incessant wire cut in these networks. On the other hand, Abuloma 33kv line is not overloaded but a larger percentage of the connected distribution transformers feeding from this feeder are overloaded, explaining the reason for periodic fuse cut on the affected distribution substation.

2.3.2 Voltage Drop

On the other hand, it was observed that Imiringi II, Amika and Itu 33kv feeders are experiencing more voltage drop due to the lengthy nature of the feeders (both thermal and voltage limit of performance criteria are violated). The feeders are well over 100km and customers with transformers connected towards the end of theses feeders experience low voltages below the stipulated voltage drop by regulation. Irregular sizes of conductors were used on these feeders (150mm, 100mm, and 70mm). On this premise it was assertively deduced that Imiringi II, Itu and Amika are experiencing more voltage drop due to the lengthy nature of the feeders and wrong conductor sizing. These are quite lengthy and customers who have their distribution transformer towards the end of the feeders are experiencing low voltage and it was observed that irregular sizes of conductor were used in the construction of all the feeders. Some of the conductors sizes used includes (AAC, ACSR) 150mm, 100mm and 70mm. This introduces high resistance at the point where the under sized conductors were used, thus leading to heat dissipations and subsequent voltage drop. This also explains the reason for periodic wire cut on these feeders. Generally, all the feeders under study show that some bus voltages are at critical which need to be corrected.

2.3.3 Phase Imbalance

This is a measure of inequality of the phase voltages which degrade the performance and shortens the life of the equipment. Phase imbalance was observed on Imiringi II, Itu and Amika 33kv feeder. In the case, the load was not evenly balanced across the three phases of the feeder. There was an increase in the reactive power flow on the line which therefore increases the losses on the line. As a result of this, power factor limit is violated.

2.3.4. Physical Inspection

During network asset inventory and mapping, physical inspection shows aging of distribution equipment, undersized cross arm, undersized jumpers, wrong conductor binding and cable jointing, intrusion of vegetation along the line. These generally impact on the line characteristic which includes increase in the line inductance and introduction of imbalance defect which leads to high technical losses (line losses) and as well lead to reduced reliability as a result of increasent faults.

2.4 Network Reinforcement Project

Network reinforcement projects are the projects proposed to correct all flows and the anomalies discovered during the power flow studies. These projects will improve the reliability of the electrical network and increase access to electricity services at the consumer's end. There are generally two approaches to network improvement, first is to restore the failed components in shorter time and the second one is to ensure sufficient redundancies in systems. The deterministic approach here reinforces the network when it can no longer securely supply its demand under network contingencies as required by security standards. Both reliability and deterministic approach were considered in the planning of network reinforcement projects in this research work. 2.4.1 Reinforcement project on Imiringi ii 33kv feeder

Considering the route length of Imiringi 11 33kv, Auto-reclosers was proposed at some points on the main line and Operatable D-fuse (line fuse) on all t-offs on the line. This will ensure segregation and sectionalisation of faults on the line thus limiting the number of customer's interruption due to certain faults on the line. Gang isolators were proposed on the t-off's to be positioned after the D-fuses. This enables proper physical isolation of the line to allow for safe working space and guarantee during maintenance without interrupting the entire feeder. Reconductoring was proposed for the weak and undersized conductor on the line to reduce the voltage drop and conductor snapping. Alternative supply source was proposed from Gbarin Generating station to provide for backup supply in the event of failure of the grid, thus mitigating against N-1 contingency. Vegetation control was also proposed to reduce transient faults due to overgrown vegetation.

2.4.2Reinforcement project on Itu 33kv feeder

In considering the nature of this feeder as revealed by the study, Auto-reclosers was proposed at some points on the main line and Operatable D-fuse (line fuse) on all t-offs on the line. This will ensure segregation and sectionalisation of faults on the line thus limiting the number of customer's interruption due to certain faults on the line. Gang isolators were proposed on the t-off's to be positioned after the D-fuses. This enables proper physical isolation of the line to allow for safe working space and guarantee during maintenance without interrupting the entire feeder. Reconductoring was proposed for the weak and undersized conductor on the line to reduce the voltage drop and conductor snapping. Alternative supply source was proposed from Odukpani Generating station to provide for backup supply in the event of failure of the grid, thus mitigating against N-1 contingency. Vegetation control was also proposed to reduce transient faults due to vegetation contact with the line.

2.4.3Reinforcement project on Amika 33kv feeder

Considering the result gotten from the load flow, Amika 33kv feeder is overloaded and from the data gathered, overhead load shedding is been carried on the daily basis to enable the feeder withstand the electrical power flowing through. Hence, load on Idun-dun t-off on this feeder will be transferred to another feeder called water board feeder of which presently is utilizing only 6% of its capacity and in close proximity spatially to Amika feeder. This network reconfiguration will deload the over loaded Amika feeder .Due to the lengthy nature of the feeder, Auto-reclosers was proposed at some points on the main line and Operatable D-fuse (line fuse) on all t-offs on the line. This will ensure segregation and sectionalisation of faults on the line thus limiting the number of customer's interruption due to certain faults on the line. Gang isolators were proposed on the t-offs to be positioned after the D-fuses. This enables proper physical isolation of the line to allow for safe working space and guarantee during maintenance without interrupting the entire feeder. Reconductoring was proposed for the weak and undersized conductor on the line to reduce the voltage drop and conductor snapping. Alternative supply source was proposed from Odukpani Generating station to provide for backup supply in the event of failure of the grid, this mitigating against N-1 contingency. Vegetation control was also proposed to allow all customers use supply and to prevent local load shedding.

2.4.4 Reinforcement project on Trans Amadi 33kv feeder

Considering the fact that Trans Amadi has a short route length and at the same time looking at the result from the load flow study, gang isolators were proposed on the t-off's to be positioned after the D-fuses. This enables proper physical isolation of the line to allow for safe working space and guarantee during maintenance without interrupting the entire feeder. Reconductoring was proposed for the weak and undersized conductor on the line to reduce the voltage drop and conductor snapping. Alternative supply source was proposed from Trans Amadi gas turbine to provide for backup supply in the event of failure of the grid, thus mitigating against N-1 contingency. Vegetation control was also proposed to reduce transient faults due to vegetation contact with the lines and all dilapidated feeder pillar unit was changed to allow all customers use supply and to prevent local load shedding. See appendix D1 for this network reconfiguration.

2.4.5 Reinforcement project on Abuloma 33kv feeder

Taking into account that Abuloma feeder is not a long line and also looking at the results from the load flow study, Gang isolators were proposed on the t-off's to be positioned after the D-fuses. This enables required physical isolation of the line to allow for safe working space and guarantee during maintenance without interrupting the entire feeder. Reconductoring was proposed for the weak and undersized conductor on the line to reduce the voltage drop and conductor snapping. Alternative supply source was proposed from Trans Amadi gas turbine to provide for backup supply in the event of failure of the grid, thereby mitigating against N-1 contingency. Vegetation control was also proposed to reduce transient faults due to vegetation contact with the lines and all dilapidated feeder pillar unit was proposed to be change to allow all customers use supply and to

prevent local load shedding. From the load flow, it was observed that some substations are overloaded and installation of relief transformer will reduce frequent fuse cut for the distribution transformers. See appendix D2 for this network reconfiguration.

2.5 Calculation of New Feeder Reliability Indices After Reliability Improvement Project

The new reliability indices were calculated for both network reinforcement approaches used which are reliability approach, reliability and deterministic approaches combined. The first reliability was calculated for reliability approach and reliability and deterministic approaches combined was also considered thereafter using equation 2.5, 2.6 and 2.6.

2.6 Determination Of Cost Reflective Tariff For The Feeders Under Study With Improved Reliability.

A tariff is cost reflective if all the "allowable frugal costs" of the sector can be covered through the tariff over the regulatory period. It is very important for a tariff to be cost reflective so that investor can still be in business. From the cost that has been determined from the BEME (see appendix E), the cost reflective tariff of the feeders was determined using the formula below. The overall cost of the improved reliability which was calculated and used to estimate the new electricity tariff that is cost reflective

$Tariff = \frac{Intervention}{CollectableSales}$	2.9	
Where Allowable Revenue is		
Genco cost + Transco cost + SO co	ost + MO cost + Auxiliary services + Disco	,
cost	2.10	
a. Genco cost can be calculated thus		
Genco cost = Capacity + Opex	2.11	
Where Opex is operating expenses		
b. Transco Cost can be calculated thus		
Transco cost = $Opex + ROI + Depreciation$	2.12	
Where ROI is Return on Investment		
c. System Operator (SO) cost		
$SO cost = Opex + ROI \dots$	2.13	
d. Market Operator (MO) cost		
$MO cost = Opex + ROI + MO \dots$	2.14	
An ailland Compions is accounted by NEDC where C	50/ halawaa ta Dant Hanaannt Daamlatam ahanaa tha Anaillam	-

Ancillary Services is assumed by NERC, where 6.5% belongs to Port Harcourt. Regulatory shares the Ancillary services among all Disco. Each disco has its own percentage allocation according to NERC rules. The feeders under study fall within the Port Harcourt Disco and Port Harcourt priority of 6.5%.

a. Disco Cost

Disco cost = OpEx + ROI + Depreciation + Debt repayment2.15

Where depreciation is 20.74% of capital expenditure (CapEX) and WAIC is assumed to be 11% of deficit. b. Collectable Sales

Where Collectable Sales, CS is a function of the energy delivered to disco's less certain percentages of technical loss (Tc), Commercial Loss (Cm), and less Collection Loss (Co).

Where Tc, is Energy delivered less 12% technical losses, Cm is Tc less 13% of Commercial loss, CS is Cm less 20% of Collection loss, Tc = 12% < technical losses, and Cm = 13% < Commercial loss, CS = 20% < Collection loss

III. RESULT AND DISCUSSION

3.1 Reliability issues.

In order to tackle reliability issues in the power sector and as part of system restructuring, incentives should be introduced to encourage distribution company. This action is intended to address reliability issues and improve customer satisfaction. It will lead to a major behavioral change in the consumers with respect to attitude to payment, which in turn lead to high collection efficiency on the side of the distribution company. The customer outages (both frequency and duration), historical peak loads, presents important data which was used here to evaluate the impact of outages on the general system performance. The plot of reliability for the period prior to when reinforcement project was carried out and after reinforcement projects shows that the reinforcement will lead to increased revenue, decrease outage costs and increase longevity of distribution equipment.

3.1.1 Determination of Feeder Load Demand

Forecasted load demand was calculated for the selected feeders using regression analysis as specified in equation 2.1. In the load forecast table below, a five-year data sample from the control room log book was used

to determine the expected load demand of the area under study. A closer look at these values presented below shows there will be increase in the load demand over time resulting from the impact of development in the area where these feeders are supplying power to. The essence of determining the load demand is to take into account the growth rate where reinforcement projects are being proposed. This will help in making important decisions like energy purchasing, adding new generation, load switching, contract evaluation and infrastructure development.

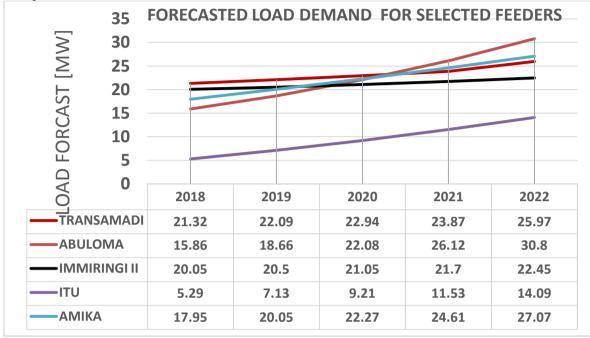


Figure 3.1: Chart showing forecasted load demand of the feeders under study.

3.2 Impact of Reinforcement Projects on Network Reliability.

The extent of the impact of improved network reliability occasioned by increased availability of feeders and reduction in outages as a result of network reinforcement projects was measured by the reliability indices calculation as in table 3.2 below. The result shows a systematic decrease in value of reliability indices which translate to improved reliability of the networks. Two approaches of reinforcement project which are reliability approach, deterministic and reliability approach combined were considered and it was determine that deterministic and reliability approach combined produces better reliability results which are not yet the acceptable figures but they have been improved from the state they were previously. From the analysis made, there was 80 percent improvement in the reliability of the network using this approach and frequency of feeder tripping and duration (hrs.) lost as a result of fault reduced further with this approach and presented in the graph below. These values can be decreased further by faster fault detection, quicker crew response but this cannot be conducted by technical improvement. From both approaches, the result indicates more availability as most distribution equipment and fuses burn out less frequently, faulty section of feeders is sectionalized when fault occurs and makes the network more reliable. This implies that reinforcing the network can effectively and quickly restore the power system from localized problems and potential system-wide imbalance. The distribution system reliability gives us a measure of how the system has performed and will performed if all proposed projects are carried out. It can be seen that maintenance plays a significant role in distribution system reliability.

From figure 3.2 below it can be seen that SAIDI was improved when reliability approach was used. The impact of reinforcement was noticed in the duration in which feeders remain out on faults and when both approaches are combined, a better result was gotten which shows that providing another source of supply when grid fails provides additional level of reliability in the network and this impact is seen above in fig 3.

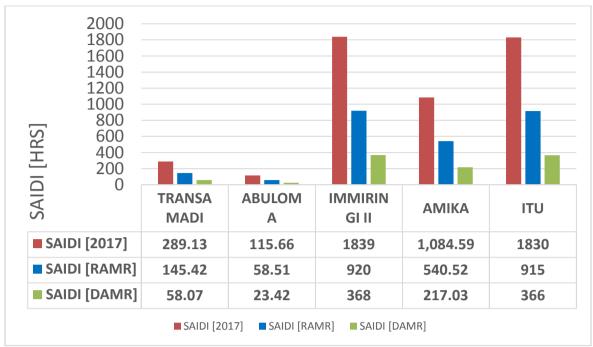


Figure 3.2: Chart showing Present SAIDI of the feeder and Calculated SAIDI of the improved network when reliability approach and combined approach were used.

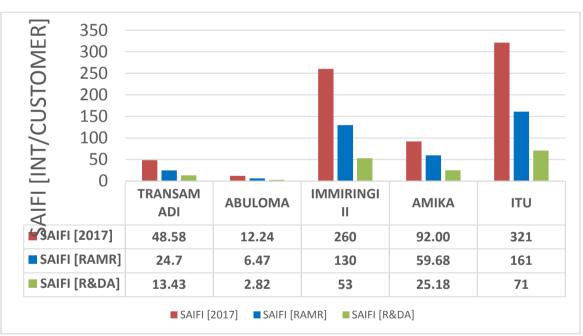


Figure 3.3: Chart showing Present SAIFI of the feeder and Calculated SAIFI of the improved network when reliability approach and combined approach were used.

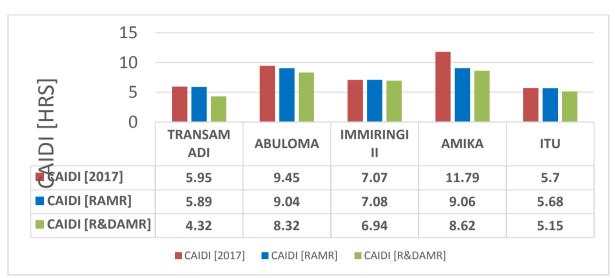


Figure 3.4: Chart showing Present CAIDI of the feeder and Calculated CAIDI of the improved network reliability approach and combined approach were used.

From figure 3.2, 3.3 and 3.4 above it can be seen that SAIDI, SAIFI and CAIDI were improved when reliability approach was used. The impact of reinforcement was also noticed in the frequency in which feeders tripped on faults. Vegetation control and trace clearing impact was felt as feeders no longer trip on fault compared to the previous condition of the network. When both approaches are combined, a better result was gotten which shows that providing another source of supply when grid fails provides additional level of reliability in the network and customers see less outage. This impact is seen above in fig 3.2, 3.3 and 3.4.

3.3 Determination of the cost of investment

Considering the level of reliability desired on the feeders under study, it is highly imperative to determine the cost of such investment that will yield the desired result of availability. The cost was calculated by preparing the bill of engineering measurement and evaluation for each feeder according to identified weaknesses in the network as shown by the power system study .The cost was determined for both deterministic and combined approach as shown in the table below and from the table, the cost of using reliability and deterministic approach combined is higher due to provision for redundancy than using reliability approach only.

Figure 3.5 Chart showing cost of investment using both reliability approach and combined approach.

3.4 Determination of cost reflective tariff for the feeders under study with improved reliability

A tariff is cost reflective and therefore, it is highly imperative to calculate the tariff which must have two objectives which are to collect the money required to cover all the cost of supplying electric power and also to send the right economic signal to each customer. These two objectives are taken care of in the tariff calculated below. The cost reflective tariff is calculated using equation 3.8.1, 3.8.2, 3.8.3, 3.8.4, 3.8.5, 3.8.6 and 3.8.7.In tariff determination, NERC only allow distribution companies recover 20.74% of its cost of investment

and weighted Average Cost of Capital allowed is also 11%. With all this condition put into consideration, tariff was calculated for the two reliability value gotten using the cost of investment calculated and other parameters as shown in the table below. The electricity pricing gotten using the cost of investment from deterministic and reliability approach combined is higher than electricity pricing from deterministic approach as shown in table 4.5c and 4.6c below. From the result gotten, it was discovered that the higher the reliability desired, the higher the cost of electricity and in variably customer will be satisfied because of the improved reliability.

Feeders	Reliability approach (₦)	Deterministic & reliability approach combined (\mathbb{N})
TRANSAMADI	62.12	64.14
ABULOMA	75.51	75.67
IMMIRINGI II	75.44	75.69
AMIKA	71.75	71.81
ITU	69.51	69.81

 Table 3.1: Comparative impacts of Network reinforcement approaches to reliability and energy pricing

3.5 Comparative impacts of network reinforcement approaches to reliability and energy pricing

Cost reflective tariff is highly imperative to electricity sector and from table 3.1 above, it shows that the cost of electricity on each feeder is different because different cost of investment was involved. Imiringi II, Amika and Itu which are rural feeders almost fall in the same category of tariff if given best line of fit. From figure 3.6 and 3.7, it confirmed that reliability is a function of cost. The higher the reliability of required in a network, the higher the cost of achieving such reliability. Figure 3.6 depicts cost reflective tariff involving reliability approach and figure 3.7 shows cost reflective tariff using deterministic and reliability approach combined. From the analysis above, the cost of using combined approach is higher than when only reliability approach was used and this led to improved reliability. Here, the cost of electricity when reliability is further improved is higher which implies that the higher the reliability attained, the higher the cost of electricity and there will be an inherent tradeoff between the increased costs of supply and reduction in the inconvenience and costs imposed on consumers due to power shortage. It can be seen that change in reliability of network is directly proportional to cost of electricity and customer satisfaction. Hence, by this reliability is considered as a variable to be optimized rather than an arbitrary imposed standard.

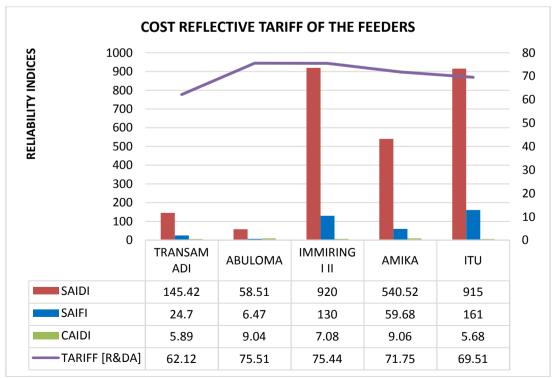


Figure 3.6 Chart showing impact of cost reflective tariff on network reliability using reliability approach.

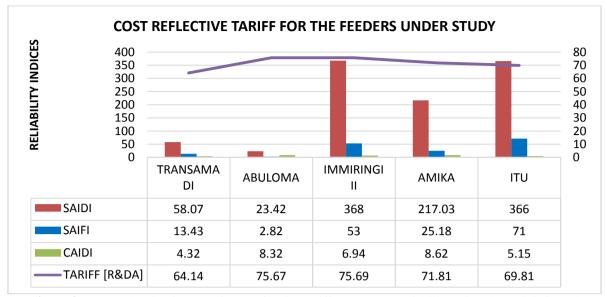


Figure 3.7 Chart showing impact of cost reflective tariff on network reliability using deterministic and reliability approach combined.

IV. CONCLUSION

Power sector is the biggest sector that can establish the course of infrastructure reforms and revival of our economy (Jha I.S and others 2002). Nigeria power sector is at cross roads and time has come for taking drastic measures. Reliability of distribution networks is a significant part of power distribution system planning and improved reliability can lead to more economic operation of the system. Hence, systemized and reasonable investment in new network components and gradual automation improves networks ability to supply more customers even in an emergency situation. Along with such improvements, constant monitoring and diagnostics of grid elements and replacement of aged and not reliable equipment can further improve system reliability while proper asset management together with reliability analyses is required to maintain satisfactory reliability standards. It can be shown from this work that some acceptable level of reliability can be achieved with a resultant cost reflective tariff which will not put pressure on the customer and as well ensure return on investment on the side of the investor. Analyses like those provided in this thesis will become of great significant as customers are becoming more sensitive to supply interruptions.

REFERENCES

- [1]. Richard, E.Brown, (2006): Electric Power Distribution Reliability, Brown ABB Inc. Second Edition, pp.355.
- [2]. Hossein S. and Mohammad S.S (2011): Electric power system planning", Springer Heidelberg, New York, pp.3
- [3]. Utilities Commission (2005): "Annual power system review" a report submitted to the electricity commission, Darwin, Australia,
- pp.5.
 [4]. Maris T.L, Sideris K.M, Pappas S.S (2006): "Reliability increase using cost-benefit decision making process" WSEAS transaction power systems, Greece, vol.1, pp.1851
- [5]. Kumar, N.M, Sangmeswara R. and Porika V. (2013): Reliability indices evaluation of a real time rural radial, distribution feeder, IEEE journal, vol.5, pp. 5-6
- [6]. Saravanan and others (2012): "Electricity demand forecast using regression analysis" a journal on soft computing, India, vol.2 pp. 365-368
- [7]. Achinaya A.A (2019): "Network planning and financial analysis", PHEDC presentation on energy management, Port Harcourt, Nigeria, pp.3-5
- [8]. Chenghong Gu, Jianzhong W.U and Furong Li (2013): "Reliability based network pricing", A Doctorate thesis of University of Bath, UK, pp. 3-4
- [9]. Jha I.S,Subir S. and Kashish B. (2002): "Improvement of power distribution system", national power system conference, New Delhi, India, pp.236-237.

A.A Dahunsi, ET.Al " Evaluation of Network Reliability Investments Costs and Resultant Electricity Pricing in Nigeria." *American Journal of Engineering Research (AJER)*, vol. 9(03), 2020, pp. 198-209.

www.ajer.org