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ABSTRACT: A numerical study of mixed convection transfers is presented. We consider the
predominance of forced axial convection on the one hand and that of natural convection on the other
hand, around a cone of revolution and inclined relative to the vertical. The vertical flow of the fluid
supposed Newtonian develops at a flow of boundary layer type around the cone. This vertical flow is
assumed to occur in the presence of ascending natural convection. The conservation equations are
solved by an implicit finite difference method. The influence of the angle of inclination of the cone on
the transfers is analyzed. The results are presented by dimensionless velocity and temperature profiles
as well as local Nusselt number and friction coefficients.
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NOMENCLATURE
Roman letter symbols To: temperature of the fluid away from the
a thermal diffusivity of the fluid, (m?.s?) wall, (K)

Cfu:  meridian friction coefficient
Cfw: azimuthal friction coefficient

Cp: specifique heat capacity at constant
pressure of the fluid, (J.Kg*K1)

Ex: Eker number

g: acceleration due to gravity, (m.s?)

Gr: Grashoft number

L: length generative, (m)

Nu: local Nusselt number

Pr: PrandIt number

R: normal distance from the projected M of a

point P of the fluid to the axis of
revolution of the cone, (m)
Re,Re.: Reynold number
Sy, Se:  factors of geometric configuration
Te. temperature of the wall, (K)

VxVyV,: velocity component in x, y and @
directions, (m.s)

XY meridian and normal coordinates,(m)
Greek letter symbols

o angle of inclination, (°)

B: volumetric coefficient and thermal

expansion, (K1)

Q. azimuthal coordinate, (°)

A thermal conductivity, (W.m™1.K?)
W dynamic viscosity, (Kg.m™.s?)

v kinematic viscosity, (m2.s%)

Oo: demi-angle of opening of cone (°)
o density of the fluid, (Kg.m?)

Q: Richardison number
Indices/Exponents

+: dimensionless variables
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I.  INTRODUCTION

Numerous theoretical and experimental studies have been carried out on convective transfers in
the vicinity of a cone of revolution. For example, the study of the influence of the angle of inclination
of the cone on the thermal transfers between the wall and fluid, by forced convection which was
initiated by F.A. Rakotomanga et E. Alidina [1], they showed that the increase in the angle of
inclination attenuates the heat exchange between the wall and the fluid on the one hand and induces a
slight increase in the thickness of the boundary layer. Similarly, for U. Canissius and E. Alidina [2],
they confirmed the results shown in [1] that the effect of the taper of the cone is relatively very weak
on the heat exchange and on the thickness of the boundary layer. In addition, they also highlighted the
existence of a privileged point. In this work, we consider a mixed laminar flow of a Newtonian fluid
around a smooth-walled cone of revolution in the presence of natural convection.

The purpose of this study is to analyze the influence of the inclination angle of the cone on the
transfers, take place in the boundary layer through forced convection. The conservation equations are
discretized using an implicit finite difference scheme, velocity fields and temperature is determined
from Thomas algorithm.

1. MATHEMATICAL FORMULATION OF THE PROBLEM
A cone of revolution of generative length L, inclined at an angle o with respect to the vertical
and plunged into a forced flow of a Newtonian fluid of ascending vertical direction, is considered.
The temperature of the surface of the wall Tp of the cone is assumed constant and different from the
temperature Too, also constant, of the fluid away from the wall.
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Figure 1: physical model




American Journal of Engineering Research (AJER) 2019

2-1. Simplifying assumptions

As part of this work, in addition to the classical assumptions of the boundary layer, we admit the following
conditions:

- the cone is fixed and does not undergo any rotation,

- the flow is laminar and permanent,

-the physical properties of the fluid, supposed to be air, are constant, except for its density in the equation of
motion, the variations of which are at the origin of a natural convection,

- the radiative transfers and the dissipation of viscous energy are negligible.

2-2. Conservation equations in the boundary layer
e Equation of continuity
ov, +5V 18V V dr

(1)
oXx oy r a(p rdx
e Momentum equation
Component in x direction
V V
v, oV, 4V, oV, oV, dr 8Ue 8 2)
OX ay T op rodx ax
Component in ¢ direction
oV v, V v, VV A/
v, Yoy, dr _Ue 8Ue 4 gpT-T.)S,
OX ay T agp rodx T a(p ay
(3)
Ue — /Uef +Ue; : modulus of external speed [1]
the coefficients Sxand S yare the factors of geometric configuration defined by [2] :
S, =sina.cose.sing, +cosa.cosé, (4)
S, =—sina.sing (5)
e Heat equation
V 2
v, Ly T Y 0t _ 01 (6)
OX oy r op oy
2-2-3. theboundary conditions associatedwith these equations is:
on the wall y=0;
T=T,, Vx =0 Vy=0 5 V=0 (7)
away from thewall y . 00;
T =Tx ;Vx=Uex; Vo= Ueo (8)
Uex et Uegare the components meridian and azimuthal of external speed [1].
Ue, =U_ (A, sina.sing) (9)
Ue, =U_ (A..cosa + B,.sina.cose) (10)

A (x) = 0,68+ 3,03296x — 25,44074x* +121,069x> — 318,64541x* + 466,99471x° — 356,0195%K° +
+110,24752x’

B, (x) = —0,80834+ 2,69424x — 21,37757x* + 98,83137x® — 252,98221x* +36305621x> —272,50282x° +
+83,5537x’

A, =2,3181-2,29665x+5,87104x" —10,90766x” +10,3346x" —4,06092x°
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2-3. Main physical quantities

e Nusselt number:Nu:—L a ;avec AT =T, —-T (11)
AT P
y=0
LU
e Reynolds number: Re, =——= (12)
1%
3
e  Grashoft number: Gr = gﬂAZTL (13)
1%
o Richardson number: Q= Gr2
e
* (14)
U 2
e Eker number : E, =C OOT
o (15)
e Prandtl number: Pr:K
a (16)
e Frictional stresses:
[avxj (avﬂ
=M —| andzr,=u| —-
%N Jyms % Jyo
o Friction coefficients
-
Cf, = % and Cf,=—2% (17)
lpU 2 lpU 2
27 7° 2770

2-4. The dimensionless equation of mixed convection

The predominance of each type of convection must be considered separately. But Ch.R.
RAMINOSOA [4] has shown, in his thesis, that it is possible to write a unique system of equations,
by introducing two coefficients, Cna for natural convection and Ce, for that of forced convection
as follows:

- If one of the convections is predominant, we put the corresponding coefficient is equal to
unity and the other is zero. But if the two convections are of equal importance, we put the two
coefficients equal to unity, and we note by Cr their sum.

- Next, the reference quantities are as follows:

o Xy o y . -« L B Vx. + V + Vv .
X —E,y —ClE,Q =@ ;I —E,VX :ng,vy =C3i,V¢ :Czi,
T T
Ue Co—-Chu— =
Ue+:C4£;Ue::C4£;Ue;=C4_‘”;U0=C5UW.T+: 6 AT Nat AT
Uoo Uoo Uoo ’ CFor—i_CNa\t

With Ci, the barycentric convection coefficients that manage the mixed convection:

1 1 1 1 1
c - C, Re2+C,_Gr* C Cir +C,Re, Gr 2 c. - C, Re2+C,,Re Gr ¢ .
1 — 3 2 = ] 3 = )
Cfor + Cnat Cfor + Cnat Cfor + Cnat
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Cfor +Cna Reoo Gr ‘ Gil’i _
47 Cfor t"‘Cnat ; C5 = CfOf +Cnat Re ; C6 = 2CforEKl +Cnat
Cfor +Cnat
Then, the dimensionless equations in the boundary layer are written:
e Equation of continuity
VL (CC |V, LV, vodr
ox* C, Joy' r"dp" rdx’ (18)
e Momentum equation
SV (CC ), avy Voavy W fdr (cF) L aue (cic,)a,
©ooxt C, ) oy" rtopt rt dxt (C? ox* Re, (3y+)2
2
(C—ZJCTQT%X
Co (19)
SN (G0, Y, Ve v, WV )dr (CFuet auet (cic, |, |
*ooxt C, )V oy r" 0p" r' dx* (CZ)r" op" Re, (@y+)2
2
{C—ZJCTQT*Sw
Co (20)
o Heatequation
v (GG, +8T*+£8T* _( CiC, (T
*ox* C, )" oy" r"op" |Re,Pr (ay+)2 1)
e The dimensionless boundary conditions
Onthewall y"=0 ;7" =1;V =0 ;Vy+=0 : 22)
+ + + Cz + + Cz +
Away fromthewall y" =00 ; T" =0 ;V, =| —= Ue, ;Vw =| —= Ue(p
C, C, (23)
e Nusselt number:
Nu:_[CTClJ(6T+] OrNu( C, j:_(aTJ o
C6 ay y*=0 CTcl ay y*=0
o Friction coefficients :
’ oV, 2 ([ C
Cfy =L Ny ;Cfy = Lee| =+ Loy =—— - 2 (25)
), ), Re, | C.C;

I1l. DIGITAL RESOLUTION

The field of study is subdivided NxMxL curvilinear parallelepipeds attached to the body of
the cone and defined by dimensionless stepsAX,,Ay,,A@, so that it is described by:

(L-DAx,,(M =DAy,,(N -DAg,, N and L are the numbers of meridians and parallels.

The equations of continuity, momentum and heat associated with boundary conditions are discretized
using an implicit finite difference method.To simplify the quantities, let U, V, W be the components
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of the velocity (V,,V,,V,") and by T the dimensionless temperatureT". Likewise for the

dimensionless size of the modulus of the external speed by Ue =Ue" Xp = x"andbyy, =y" . The
equations of momentum and heat are in the form of:
A X 1+B; X;+C; X,,,=D; 2< 1<) max—1 (26)
Where X represents the quantltles U, W and T, and Jmax characterizes the thickness of the boundary
layer. The system of equations associated with the discretized boundary conditions are solved by the
Thomas algorithm. The normal component V of velocity is deduced from the continuity equation:
k k+1 k-1 k 4
Vk _Vk _( 3 )A (U|+lj U )+ 1 (\N|+1] W|+1j)+ul+lj 1— r|_ (27)
i 2A@" AX* r.

i+1; j+1

"teC, AX r

i+1 i+1

With, 1<i<N-11<k <L-let2< j< jmax-1

The convergence within the boundary layer is achieved when the following criteria are simultaneously
checked for U, W and T:

‘ ‘x(nﬂ)_‘x(lﬁ)‘ ‘
‘Suqu(pﬂ),‘X(p)Msg

Where X =(U,W,T), X (P) and X P are respectively the values of the quantity X of the iterations p
and p+1.
Partial derivatives of local Nusselt number expressions and parietal friction coefficients are
approximated by a three-point discretization.
IV.  RESULTS AND DISCUSSIONS
The results thus presented are obtained for a cone of revolution of length L = 1m, of demi-
angle of opening &, = 20 °, of temperature Tp = 373.15K and one will take the Richardson number Q

=1, the Reynolds number Re = 1, the Prandtl number Pr = 0.72, the Grashoft number Gr = 1, the Eker
number Ex = 1 and the temperature of the fluids very far from the cone wall Too = 273.15K.

First, we validated the numerical code by comparing the results of our calculations with those
of Rakotomanga [1]. The Figure 2, illustrating the evolution of the dimensionless temperature T and
the meridian component U of the velocity of the fluid particles as a function of the dimensionless
normal coordinate yr close to the stopping point. This figure shows that our results are in good
agreement; the relative differences are almost zero. Then, the curves of Figure 3.a, illustrating the
variations of U and shows that this dimensionless meridian component is slightly increasing of xp on
the totality of the surface of the cone and abruptly increasing just at the upper end where xp = 1 fault
of the disturbance. These results corroborate with those of the evolution of the dimensionless meridian

(28)

C,.Re
coefficient of friction Cfy, represented by the quantity[ 2]CfU of Figure 8.a. The positive

25

values of Cfy explain the adherence phenomenon of the fluid particles on the surface of the cone by
the boundary layer. Figure 3.b shows that this meridian component U evolves in a sinusoidal way as a
function of. The growth of the angle of inclination, increases the amplitude of the sinusoid, it is
constant there is a privileged point located in the vicinity of the corresponding meridian ¢ = 90 °

where at this point, the component U does not depend on the inclination angle. These results thus
corroborate with the evolution of the dimensionless normal component V of the particle velocity
(Figure 5.b) and those of the dimensionless meridian coefficient of friction Cfy as shown in Figure
8.b. The curves in Figure 3.c show us the dimensionless meridian component U is a linearly
increasing function of ye. In general, the influence of the angle of inclination of the solid body is
reflected by the variation of the angle of inclination, the increase of a slightly increases the thickness
of the boundary layer and decreases the values of U. Similarly to U, the Figure 4.a shows for the
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dimensionless azimuthal component W, the fluid particles evolve slightly decreasing as a function of
Xp. These results corroborate with those of the Cfw azimuthal wall friction coefficient, which is
C,.Re
2

25
explain the adherence phenomenon of the fluid particles on the boundary layer. Similarly for the
Figure 4.b, the component W is a sinusoidal function of, its value is maximum at the meridian ¢ = 90

° and zero at the meridians¢p = 0 ° and @ = 180 °. Note that increasing the angle of inclination

increases the amplitude of the sinusoid and is constant, there is an axis of symmetry of the sinusoid
located near the meridian corresponding to ¢ = 90 ° where in this meridian, the component W reaches

its maximum value. These results corroborate with those of the Cfw azimuthal wall friction coefficient
of the Figure 9.b. The positive and zero values of Cfw explain the phenomena adhesion (¢ = 90 °) and

delamination (¢ =0 ° and ¢ = 180 °).We represent in Figure 4.c the variations of the dimensionless

azimuthal component W, the curves show that W is a linearly increasing function of ye. The increase
of a slightly increases the thickness of the boundary layer and value of the component W. The Figure
5.a shows that the VV component is more or less constant as a function of xp but very noticeable for the
disturbance zones abrupt increase near the leading edge and abrupt decrease at the upper end of the
cone. The negative values of the normal component of the velocity characterize a movement of the
fluid particles towards the wall, that is to say, the wall of the cone aspirates the fluid particles. The
positive values of V obtained especially for the large angles of inclination (o > 45°), we speak of the
phenomenon of fluid discharge by the cone. In general, the influence of the angle of inclination of the
solid results in a slight increase in the thickness of the boundary layer and the phenomenon of change
of direction of the fluid particles (suction or discharge) as shown in Figure 5.c.The Figures 6.a and 6.b
show that the temperature remains constant as a function of xp and ¢ except near the lower ends

(stopping point) and higher where there are disturbances. Increasing the angle of inclination increases
the temperature. These results corroborate with the evolution of the Nusselt number which is

represented by the dimensionless quantity ( ijW of the Figure 9.a. The positive values of Cfw

Cs

represented by the dimensionless quantity ( JNusof Figures 7.a and 7.b but in reverse

T"¥1
phenomenon. The results obtained agree that the intensity of heat exchange between the wall and the
fluid is practically uniform along the surface of the cone, with the exception of the leading edge and at
the upper end of the cone where the disturbances of the flow slightly decrease the heat exchange on
the less exposed face. The influence of the angle of inclination is not negligible, the increase of the
angle o causes a decrease in the intensity of heat exchange and this decrease in intensity is remarkable
for the large inclinations of the body solid (o > 45°).
Finally, the figure 6.c shows the fluid temperature decreases linearly as a function of yp and this result
explains the phenomenon of cooling of the temperature of the fluids in the boundary layer. In
addition, it can be considered that increasing the inclination angle causes a slight increase in the
thickness of the boundary layer.
V. CONCLUSION

We conducted a numerical study of the flow and heat transfer in the boundary layer developed
around a cone of revolution in an upward vertical forced flow. The conservation equations were
solved by an implicit finite difference scheme associated with Thomas algorithm.
We have reported mainly the study of the influence of inclination on the components of velocity,
temperature, Nusselt number and parietal friction coefficients. Thus, we have shown that a strong
inclination of the cone generates a movement of the fluid particles in the boundary layer, suction and
discharge of the fluid particles. Moreover, we have evidence of the existence of a privileged point for
which the velocity component is independent of the angle of inclination and the axis of symmetry for
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which the phenomenon of adhesion is maximal. However, the effect of the taper of the cone is
relatively very small on the heat exchange and on the thickness of the boundary layer.
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Figure 9.a: Azimuthal friction coefficient against xp Figure 9.b : Azimuthal friction coefficient against @
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