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ABSTRACT: A numerical study of mixed convection transfers is presented. We consider the 

predominance of forced axial convection on the one hand and that of natural convection on the other 

hand, around a cone of revolution and inclined relative to the vertical. The vertical flow of the fluid 

supposed Newtonian develops at a flow of boundary layer type around the cone. This vertical flow is 

assumed to occur in the presence of ascending natural convection. The conservation equations are 

solved by an implicit finite difference method. The influence of the angle of inclination of the cone on 

the transfers is analyzed. The results are presented by dimensionless velocity and temperature profiles 

as well as local Nusselt number and friction coefficients. 

Keywords:  three-dimensional mixed convection, boundary layer, inclined cone of revolution, heat 

transfer, numerical study. 
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NOMENCLATURE 
Roman letter symbols 

a:  thermal diffusivity of the fluid, (m2.s-1) 

Cfu : meridian friction coefficient 

Cfw : azimuthal friction coefficient 

Cp:  specifique heat capacity at constant 

pressure of the fluid, (J.Kg-1K-1) 

Ek:  Eker number 

g: acceleration due to gravity, (m.s-2) 

Gr: Grashoft number 

L: length generative, (m) 

Nu: local  Nusselt number 

Pr: Prandlt number 

R: normal distance from the projected M of a 

point P of the fluid to the axis of 

revolution of the cone, (m) 

Re,Re∞: Reynold number 

Sx, Sφ:  factors of geometric configuration  
 

TP: temperature of the wall, (K) 

T∞: temperature of the fluid away from the 

wall, (K) 

Vx,Vy,Vφ: velocity component in x, y and 

 directions, (m.s-1) 

x,y : meridian and normal coordinates,(m) 

Greek letter symbols 

α: angle of inclination, (°) 

β:  volumetric coefficient and thermal 

expansion, (K-1) 

 :  azimuthal coordinate, (°) 

λ: thermal conductivity, (W.m-1.K-1) 

µ: dynamic viscosity, (Kg.m-1.s-1) 

ν: kinematic viscosity, (m2.s-1) 

Ɵ0: demi-angle of opening of cone (°) 

  :  density of the fluid, (Kg.m3) 

Ω: Richardison number  

Indices/Exponents 

+ :  dimensionless variables

http://www.ajer.org/
mailto:el4tib@gmail.com
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I. INTRODUCTION 

Numerous theoretical and experimental studies have been carried out on convective transfers in 

the vicinity of a cone of revolution. For example, the study of the influence of the angle of inclination 

of the cone on the thermal transfers between the wall and fluid, by forced convection which was 

initiated by F.A. Rakotomanga et E. Alidina [1], they showed that the increase in the angle of 

inclination attenuates the heat exchange between the wall and the fluid on the one hand and induces a 

slight increase in the thickness of the boundary layer. Similarly, for U. Canissius and E. Alidina [2], 

they confirmed the results shown in [1] that the effect of the taper of the cone is relatively very weak 

on the heat exchange and on the thickness of the boundary layer. In addition, they also highlighted the 

existence of a privileged point. In this work, we consider a mixed laminar flow of a Newtonian fluid 

around a smooth-walled cone of revolution in the presence of natural convection. 

The purpose of this study is to analyze the influence of the inclination angle of the cone on the 

transfers, take place in the boundary layer through forced convection. The conservation equations are 

discretized using an implicit finite difference scheme, velocity fields and temperature is determined 

from Thomas algorithm. 

 

II. MATHEMATICAL FORMULATION OF THE PROBLEM 

 A cone of revolution of generative length L, inclined at an angle α with respect to the vertical 

and plunged into a forced flow of a Newtonian fluid of ascending vertical direction, is considered. 

The temperature of the surface of the wall Tp of the cone is assumed constant and different from the 

temperature T∞, also constant, of the fluid away from the wall. 
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Figure 1: physical model 
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2-1. Simplifying assumptions 

As part of this work, in addition to the classical assumptions of the boundary layer, we admit the following 

conditions: 

- the cone is fixed and does not undergo any rotation, 

- the flow is laminar and permanent, 

-the physical properties of the fluid, supposed to be air, are constant, except for its density in the equation of 

motion, the variations of which are at the origin of a natural convection, 

- the radiative transfers and the dissipation of viscous energy are negligible. 

 

2-2. Conservation equations in the boundary layer 

 Equation of continuity 
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: modulus of external speed [1]

 
the coefficients Sx and S  are the factors of geometric configuration defined by [2] : 
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2-2-3. theboundary conditions associatedwith these equations is: 

on the wall   y=0 ;  

T= Tp  ,      Vx       =  0        ; Vy=  0      ;      Vφ=  0           (7) 

away from  the wall  y          ∞ ;  

T = T∞ ;Vx = Uex; Vφ= Ueφ                  (8) 

Uex et Ueφare the components meridian and azimuthal of external speed [1]. 
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2-3. Main physical quantities 

 Nusselt number :

0
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2-4. The dimensionless equation of mixed convection  

The predominance of each type of convection must be considered separately. But Ch.R. 

RAMINOSOA [4] has shown, in his thesis, that it is possible to write a unique system of equations, 

by introducing two coefficients, CNat for natural convection and CFor for that of forced convection  

as follows: 

- If one of the convections is predominant, we put the corresponding coefficient is equal to 

unity and the other is zero. But if the two convections are of equal importance, we put the two 

coefficients equal to unity, and we note by CT their sum. 

- Next, the reference quantities are as follows: 
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With Ci, the barycentric convection coefficients that manage the mixed convection: 
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Then, the dimensionless equations in the boundary layer are written:  

 

 Equation of continuity 
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 Momentum equation 
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 Heat equation 
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 The dimensionless boundary conditions  

On the wall 0y  ; 1T  ; 0
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yV  ;                                                                             
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Away from the wall y  ; 0T  ; 
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 Friction coefficients  : 
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III. DIGITAL RESOLUTION 

 The field of study is subdivided NxMxL curvilinear parallelepipeds attached to the body of 

the cone and defined by dimensionless steps   ,, yx
,
so that it is described by:

  )1(,)1(,)1( NyMxL , N and L are the numbers of meridians and parallels. 

The equations of continuity, momentum and heat associated with boundary conditions are discretized 

using an implicit finite difference method.To simplify the quantities, let U, V, W be the components 
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of the velocity (


VVV yx ,, ) and by T the dimensionless temperature
T . Likewise for the 

dimensionless size of the modulus of the external speed by Ue =
Ue ,

 xxP and by
 yyP  . The 

equations of momentum and heat are in the form of: 

1 1 2 max 1j j j j j j jA X B X C X D j J                                                                          (26) 

Where X represents the quantities U, W and T, and Jmax characterizes the thickness of the boundary 

layer. The system of equations associated with the discretized boundary conditions are solved by the 

Thomas algorithm. The normal component V of velocity is deduced from the continuity equation: 
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The convergence within the boundary layer is achieved when the following criteria are simultaneously 

checked for U, W and T: 
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Where X =(U,W,T), 
 pX  and

 1pX are respectively the values of the quantity X of the iterations p 

and p+1. 

Partial derivatives of local Nusselt number expressions and parietal friction coefficients are 

approximated by a three-point discretization. 

IV. RESULTS AND DISCUSSIONS 

 The results thus presented are obtained for a cone of revolution of length L = 1m, of demi-

angle of opening 0 = 20 °, of temperature TP = 373.15K and one will take the Richardson number Ω 

= 1, the Reynolds number Re = 1, the Prandtl number Pr = 0.72, the Grashoft number Gr = 1, the Eker 

number EK = 1 and the temperature of the fluids very far from the cone wall T∞ = 273.15K. 

First, we validated the numerical code by comparing the results of our calculations with those 

of Rakotomanga [1]. The Figure 2, illustrating the evolution of the dimensionless temperature T and 

the meridian component U of the velocity of the fluid particles as a function of the dimensionless 

normal coordinate yP close to the stopping point. This figure shows that our results are in good 

agreement; the relative differences are almost zero. Then, the curves of Figure 3.a, illustrating the 

variations of U and shows that this dimensionless meridian component is slightly increasing of xP on 

the totality of the surface of the cone and abruptly increasing just at the upper end where xP = 1 fault 

of the disturbance. These results corroborate with those of the evolution of the dimensionless meridian 

coefficient of friction CfU, represented by the quantity UCf
CC

C
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.

Re.
 of Figure 8.a. The positive 

values of CfU explain the adherence phenomenon of the fluid particles on the surface of the cone by 

the boundary layer. Figure 3.b shows that this meridian component U evolves in a sinusoidal way as a 

function of. The growth of the angle of inclination, increases the amplitude of the sinusoid, it is 

constant there is a privileged point located in the vicinity of the corresponding meridian  = 90 ° 

where at this point, the component U does not depend on the inclination angle. These results thus 

corroborate with the evolution of the dimensionless normal component V of the particle velocity 

(Figure 5.b) and those of the dimensionless meridian coefficient of friction CfU as shown in Figure 

8.b. The curves in Figure 3.c show us the dimensionless meridian component U is a linearly 

increasing function of yP. In general, the influence of the angle of inclination of the solid body is 

reflected by the variation of the angle of inclination, the increase of α slightly increases the thickness 

of the boundary layer and decreases the values of U. Similarly to U, the Figure 4.a shows for the 
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dimensionless azimuthal component W, the fluid particles evolve slightly decreasing as a function of 

xP. These results corroborate with those of the CfW azimuthal wall friction coefficient, which is 

represented by the dimensionless quantity WCf
CC

C








2

52

1

.

Re.
of the Figure 9.a. The positive values of CfW 

explain the adherence phenomenon of the fluid particles on the boundary layer. Similarly for the 

Figure 4.b, the component W is a sinusoidal function of, its value is maximum at the meridian  = 90 

° and zero at the meridians  = 0 ° and  = 180 °. Note that increasing the angle of inclination 

increases the amplitude of the sinusoid and is constant, there is an axis of symmetry of the sinusoid 

located near the meridian corresponding to  = 90 ° where in this meridian, the component W reaches 

its maximum value. These results corroborate with those of the CfW azimuthal wall friction coefficient 

of the Figure 9.b. The positive and zero values of CfW explain the phenomena adhesion ( = 90 °) and 

delamination ( = 0 ° and  = 180 °).We represent in Figure 4.c the variations of the dimensionless 

azimuthal component W, the curves show that W is a linearly increasing function of yP. The increase 

of α slightly increases the thickness of the boundary layer and value of the component W. The Figure 

5.a shows that the V component is more or less constant as a function of xP but very noticeable for the 

disturbance zones abrupt increase near the leading edge and abrupt decrease at the upper end of the 

cone. The negative values of the normal component of the velocity characterize a movement of the 

fluid particles towards the wall, that is to say, the wall of the cone aspirates the fluid particles. The 

positive values of V obtained especially for the large angles of inclination (  45 ), we speak of the 

phenomenon of fluid discharge by the cone. In general, the influence of the angle of inclination of the 

solid results in a slight increase in the thickness of the boundary layer and the phenomenon of change 

of direction of the fluid particles (suction or discharge) as shown in Figure 5.c.The Figures 6.a and 6.b 

show that the temperature remains constant as a function of xp and  except near the lower ends 

(stopping point) and higher where there are disturbances. Increasing the angle of inclination increases 

the temperature. These results corroborate with the evolution of the Nusselt number which is 

represented by the dimensionless quantity Nus
CC

C

T









1

6

.
of Figures 7.a and 7.b but in reverse 

phenomenon. The results obtained agree that the intensity of heat exchange between the wall and the 

fluid is practically uniform along the surface of the cone, with the exception of the leading edge and at 

the upper end of the cone where the disturbances of the flow slightly decrease the heat exchange on 

the less exposed face. The influence of the angle of inclination is not negligible, the increase of the 

angle α causes a decrease in the intensity of heat exchange and this decrease in intensity is remarkable 

for the large inclinations of the body solid (  45 ). 

Finally, the figure 6.c shows the fluid temperature decreases linearly as a function of yp and this result 

explains the phenomenon of cooling of the temperature of the fluids in the boundary layer. In 

addition, it can be considered that increasing the inclination angle causes a slight increase in the 

thickness of the boundary layer. 

V. CONCLUSION 

 We conducted a numerical study of the flow and heat transfer in the boundary layer developed 

around a cone of revolution in an upward vertical forced flow. The conservation equations were 

solved by an implicit finite difference scheme associated with Thomas algorithm. 

We have reported mainly the study of the influence of inclination on the components of velocity, 

temperature, Nusselt number and parietal friction coefficients. Thus, we have shown that a strong 

inclination of the cone generates a movement of the fluid particles in the boundary layer, suction and 

discharge of the fluid particles. Moreover, we have evidence of the existence of a privileged point for 

which the velocity component is independent of the angle of inclination and the axis of symmetry for 
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which the phenomenon of adhesion is maximal. However, the effect of the taper of the cone is 

relatively very small on the heat exchange and on the thickness of the boundary layer. 

 

Figure 2 : Curves of comparison of the dimensionless component meridian of the velocity  U and 

                temperature T against yp(j) 

 

 
Figure 3.a : Meridian component of the Velocity                   Figure 3.b : Meridian component of the velocity 

                    against xP                                                                                                                              against  

 

 
Figure 3.c : Meridian component  of the velocity                   Figure 4.a : Azimuthal component of the velocity   

                    against yP                                                                                                                               against xP 
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Figure 4.b : Azimuthal component of  the velocity   Figure 4.c : Azimuthal component of the velocity   

against
            

against yP 

 

Figure 5.a : Normal component of the of  the velocity                    Figure 5.b : Normal component of the velocity  

                    against xP                                                                                                                                            against   

 

 

Figure 5.c : Normal component of the velocity  against yP                           Figure 6.a : Temperature profile against xP 
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Figure 6.b: Temperature profile against 
                                          

Figure 6.c : Temperature profile against yP 

 

 

Figure 7.a :  Nusselt number against xp                                                   Figure 7.b:Nusselt number against    
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Figure 9.a: Azimuthal friction coefficient against  xp          Figure 9.b : Azimuthal friction coefficient against   
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