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ABSTRACT:Vast scale information driven frameworks enable associations to store, control, and get an 

incentive from expansive volumes of information. They comprise of dispersed segments spread over an 

adaptable number of associated machines and include complex programming /equipment stacks with different 

semantic layers. These frameworks enable associations to take care of built up issues including a lot of 

information, while catalyzing new, information driven organizations, for example, web crawlers, interpersonal 

organizations, and distributed computing and information stockpiling specialist organizations. The multifaceted 

nature, decent variety, scale and quick advancement of vast scale information driven frameworks make it trying 

to create instinct about these frameworks, increase operational experience, and enhance execution. It is a 

critical research issue to build up a technique to plan and assess such frameworks in light of the exact conduct 

of the targeted workloads. Utilizing an exceptional gathering of nine mechanical workload hints of business-

basic huge scale information driven frameworks, we build up a workload-driven plan and assessment technique 

for these frameworks and apply the strategy to address beforehand unsolved outline issues. Specifically, the 

exposition contributes the accompanying: 

1. A calculated structure of separating workloads for substantial scale information driven frameworks into 

information get to designs, calculation examples, and load landing designs.  

2. A workload investigation and union strategy that utilizations multi-dimensional, non-parametric 

measurements to extricate bits of knowledge and create delegate conduct.  

3. Case investigations of workload examination for modern arrangements of Map Reduce and enterprise 

organize capacity frameworks, two cases of huge scale information driven frameworks.  

4. Case investigations of workload-driven outline and assessment of a vitality efficient Map Reduce 

framework and Internet server farm arrange transport convention pathologies, two research themes that 

require workload-particular bits of knowledge to address. By and large, the postulation builds up a more 

target and orderly comprehension of a rising and imperative class of PC frameworks. The work in this 

paper advances quicken the reception of huge scale information driven frameworks to promote genuine 

problems significant to business, science and everyday consumers. 

KEYWORDS: Enterprise Network Storage Measure, Solid State Drives (SSD), Client Side Access Patterns, 

Server Side Access  Patterns, Map Reduce, Information Driven Frameworks 
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I. INTRODUCTION 

 Workload Analysis and Design Insights - Enterprise Network Storage Measure the ground before 

raising urban areas. This is the second of two sections that apply the workload examination methods to 

extensive scale information driven frameworks. Here, we investigate two endeavour organize capacity 

workloads. The examination has an indistinguishable objectives i.e., to revelation plan and assessment bits of 

knowledge not generally accessible. While both Map Reduce and undertaking network stockpiling are cases of 

substantial scale information driven frameworks, they differ in the accompanying ways:  

1  . Enterprise system stockpiling frameworks have a more mind-boggling structure, with capacity servers being 

unmistakable from capacity customers, and each separating further into various semantic layers.  

2.  The workload does not contain calculation designs as that for Map Reduce, since the main role of the 

framework is to capacity and recover information.  

http://www.ajer.org/
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3.   Enterprise system stockpiling speaks to a set up sort of PC framework that has developed to wind up a sort 

of huge scale information driven framework because of the changing scale and nature of the information it 

stores. This is not at all like Map Reduce, which has been deliberately outlined as a substantial scale 

information-handling framework. Consequently, this part fills in as a representation of the workload 

examination past Map Reduce. The mix of the two parts shows that our workload examination technique 

can be effective for both developing and built up frameworks.  

 

This research paper is sorted out as it is taken up later. We start by propelling the significance of analyzing 

undertaking system stockpiling workloads and portraying the follows and philosophy expansions in the part. We 

at that point talk about workload behaviour as far as customer side information get to designs and server-side 

information get to designs. We additionally detail the long haul advancement of information get to designs, 

which enables increment to confidence that the technique means undertaking system stockpiling use cases past 

the ones analyzed in this part. We close the part by featuring some venture organize capacity plan engineering 

patterns uncovered by the creation work loads, and condensing the more extensive ramifications of the part with 

respect to outline and assessment approaches.  

 

II. MOTIVATION 

 Endeavour stockpiling frameworks are composed around an arrangement of information get to designs. 

The storage framework can be particular by planning to a specific information get to design; e.g., a capacity 

framework for gushing video bolsters different get to designs than a record vault. The better the entrance design 

is comprehended, the better the capacity framework plan. Bits of knowledge into get to designs have been gotten 

from the examination of existing le framework workloads, normally through follow investigation thinks about. 

While this is the right broad procedure for enhancing stockpiling framework plan, past methodologies have 

basic inadequacies, particularly given late changes in innovation patterns. In this part, we show another plan 

approach to conquer these deficiencies. The information put away on big business organize joined capacity 

frameworks is experiencing  

changes because of a crucial move in the hidden innovation patterns. We have watched three such patterns, 

including:  

Scale: Data estimate develops at a disturbing rate, because of new sorts of social, business and scientific 

applications, and the want to \never erase" information.  

Heterogeneity: The blend of information composes put away on these capacity frameworks is winding up 

progressively intricate, each having its own particular necessities and access designs. Combination: 

Virtualization has empowered the union of various applications and their information onto less capacity servers. 

These virtual machines (VMs) additionally show total information get to designs more perplexing than those 

from singular customers do.  

 Better outline of future stockpiling frameworks requires bits of knowledge into the changing access 

designs because of these patterns. While past follow contemplates, have been utilized to determine information 

get to designs, we trust that they have the accompanying deficiencies:  

 

Uni-dimensional: Although existing strategies investigate numerous entrance qualities, they do as such each 

one in turn, without uncovering cross-trademark conditions.   

 

Predisposition: capacity framework originators searching for specific designs in light of earlier mental models 

performed past investigations. This acquaints an inclination that requirements with be returned to in view of the 

new innovation patterns. 

 

Storage server centric:  Past le system studies focused primarily on storage servers. This creates a critical 

knowledge gap regarding client behaviour. To overcome these shortcomings, we propose a new design 

methodology backed by the analysis of storage system traces. We present a method that simultaneously analyzes 

multiple characteristics and their cross dependencies. We use a multi-dimensional, statistical correlation 

technique, called k-mean, that is completely agnostic to the characteristics of each access pattern and their 

dependencies. The K-means algorithm can analyze hundreds of dimensions simultaneously, providing added 

objectivity to our analysis. To further reduce expertise bias, we involve as many relevant characteristics as 

possible for each access pattern. In addition, we analyze patterns at different granularities (e.g., at the user 

session, application, le level) on the storage server as well as the client, thus addressing the need for 

understanding client patterns. The resulting design insights enable policies for building new storage systems.[1] 

We analyze two recent network-attached storage le system traces from a production enterprise data centre. Table 

1 summarizes our key observations and design implications; they will be detailed later in the chapter. Our 

Methodology leads to observations that would be difficult to extract using past methods. We illustrate two such 
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access patterns, one showing the value of multi-granular analysis (Observation 1 in Table 1) and another 

showing the value of multi-feature analysis. 

 
Client side observations and design implications         Server side observations and design implications 

1. Client sessions with IO sizes > 128KB are read 7. Files with >70% sequential read or write have no re- 

 only or write only. ) Clients can consolidate  peated reads or overwrites. ) Servers should delegate 

 Sessions based on only the read-write ratio.  sequentially accessed  les to clients to improve IO per- 

   formance. 

2. Client sessions with duration >8 hours do 8. Engineering  les with repeated reads have random ac- 

 10MB of IO. ) Client caches can already  t  cesses. ) Servers should delegate repeatedly read  les 
 an entire day's IO.  to clients; clients need to store them in  ash or memory. 

3. Number of client sessions drops o  linearly by 9. Most  les are active (have opens, IO, and metadata ac- 

 20% from Monday to Friday. ) Servers can get   cess) for only 1-2 hours in a few months. ) Servers     can 
 an extra \day" for background tasks by running  use  le idle time to compress or deduplicate to increase 

 at appropriate times during week days.  storage capacity. 

4. Applications with <4KB of IO per  le open and 10. All  les have either all random access or >70% sequen 

 many opens of a few  les do only random IO.  tial access. (Seen in past studies too) ) Servers can 

 ) Clients should always cache the  first few KB  select the best storage medium for each  le based on 

 of IO per  le per application.  only access sequentiality. 

5. Applications with >50% sequential read or 11. Directories with sequentially accessed  les almost al- 

 write access entire  les at a time.  ) Clients  ways contain randomly accessed  les as well. ) Servers 

 can request  le pre-fetch (read) or delegation  can change from per-directory placement policy (de- 

 (write) based on only the IO sequentiality.  fault) to per- le policy upon seeing any sequential IO 

   to any  les in a directory. 

6. Engineering applications with >50% sequential 12. Some directories aggregate only  les with repeated 

 read and sequential write are doing code com-  reads and overwrites.  ) Servers can delegate these 

 pile tasks, based on  le extensions. ) Servers  directories entirely to clients, tradeo s permitting. 

 can identify compile tasks; server should cache   

 the output of these tasks.   

Table 1: Summary of design insights, separated into insights derived from client access patterns and server 

access patterns. The workload analysis gives us high confidence that the proposed improvements will bring a 

benefit. We defer to future work the implementation of these system changes and the quantisation of 

performance gains per workload 

 

First, we observe (Observation 1) that sessions with more than 128KB of data reads or writes are either 

read-only or write-only. This observation affects shared caching and consolidation policies across sessions. 

Specifically, client  OSs can detect and co-locate cache sensitive sessions (read-only) with cache insensitive 

sessions (write-only) using just one parameter (read-write ratio). This improves cache utilization and 

consolidation (in-creased density of sessions per server). 

Similarly, we observe (Observation 8) that les with >70% sequential read or sequential write have no 

repeated reads or overwrites.[2] This access pattern involves four characteristics: read sequentiality, write 

sequentiality, repeated read behaviour, and over-write behaviour. The observation leads to a useful policy: 

sequentially accessed les do not need to be cached at the server (no repeated reads), which leads to an efficient 

buffer cache. 

These observations illustrate that our methodology can derive unique design implications that leverage 

the correlation between different characteristics. To summarize, our contributions are: 

Identify storage system access patterns using a multi-dimensional statistical analysis technique. Build a 

framework for analyzing traces at different granularity levels at both server and client. Analyze our specific 

traces and present the access patterns identified. Derive design implications for various storage system 

components from the access patterns. 

 

Traces and Methodology Extensions 

 In this section, we describe our analysis method in detail. We start with a description of the traces we 

analyzed, followed by a description of the access units selected for our study. Next, we describe key steps in our 

analysis process, including selecting the right features for each access unit, using the k-means data clustering 

algorithm to identify access patterns, and additional information needed to interpret and generalize the results. 

 

Traces Analyzed 

 We collected Common Internet File System (CIFS) traces from two large-scale, enterprise-class le 

servers deployed at our corporate data centres. One server covers roughly 1000 employees in marketing, sales, 

finance, and other corporate roles. We call this the corporate trace. The other server covers roughly 500 

employees in various engineering roles. We call this the engineering trace.  
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 The trace collecting infrastructure is described. The corporate trace rejects activities on 3TB of active 

storage from 20th September, 2015 to 21
st
 November, 2015. It contains activity from many Windows 

applications. The engineering trace reflects activities on 19TB of active storage from 10
th

 August, 2015 to 14
th
 

November, 2015. It interleaves activity from both Windows and Linux applications. In both cases, many clients 

use virtualization technologies. Thus, we believe we have representative traces with regards to the technology 

trends in scale, heterogeneity, and consolidation. Also, since protocol-independent users, applications, and 

stored data remain the primary factors affecting storage system behaviour, we believe our analysis is relevant 

beyond CIFS. 
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Figure 1: Access units analyzed. At clients, each session contains many application instances. At servers, each 

sub-tree contains many les 

 

Access Units 

We analyze access patterns at multiple access units at the server and the client. Selecting access units is 

subjective. We chose access units that form clear semantic design boundaries. On the client side, we analyze 

two access units: 

Sessions: Sessions reflect aggregate behaviour of a user. A CIFS session is bounded by matching 

session connect and logo requests. CIFS identifies it by a tuple | f client IP address, session IDg. Application 

instance: Analysis at this level leads to application specific optimizations in client VMs. CIFS identifies each 

application instance by the tuple – f client IP address, session ID, and process IDg. 

We also analyzed file open-close, but obtained uninteresting insights. Hence, we omit that access unit in the 

early part of our research work. 

 

We also examined two server side access units: 
File: Analyzing file level access patterns facilitates per- le policies and optimization techniques. Each file is 

uniquely identified by its full path name.[3] Deepest sub tree: the directory path immediately containing the le 

identifies this access unit. Analysis at this level enables per-directory policies. 

shows the semantic hierarchy among different access units. At clients, each session contains many application 

instances. At servers, each sub-tree contains many files. 

 

 
Figure 2: Methodology overview. The two-way arrows and the loop from Step 2 through Step 5 indicate our 

much iteration between the steps 

 

Analysis Process 
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Our method (Figure 2) involves the following steps: 

1. Collect network storage system traces. 

2. De ne the descriptive features for each access unit. This step requires domain knowledge about storage 

systems. 

3. Extract multiple instances of each access unit, and compute from the trace the corresponding numerical 

feature values of each instance. 

4. Input those values into k-means, a multi-dimensional statistical data clustering technique. 

5. Interpret the k-means output and derive access patterns by looking at only the relevant subset of features. This 

step requires knowledge of both storage systems and statistics. We also need to extract considerable additional 

information to support our interpretations. 

6. Translate access patterns to design insights. 

We give more details about Steps 2, 4, and 5 in the following subsections. 

 

Selecting features for each access unit 

Choosing the arrangement of engaging highlights for each entrance unit requires area information  

about capacity frameworks (Step 2 in Figure 2). It likewise presents some subjectivity, since the 

selection of highlights restricts how one access example can vary from another. The human fashioner needs to 

choose some essential highlights at first, e.g., add up to IO size and read-compose proportion for a le.  

We won't know whether we have a decent arrangement of highlights until the point that we have 

finished the whole investigation process. On the off chance that the investigation comes about abandon some 

plan decision ambiguities; we have to add new highlights to elucidate those ambiguities, again utilizing space 

information. For instance, for the most profound sub trees, we figure different percentiles (25th, 50th, and 75th) 

of specific highlights like read-compose proportion in light of the fact that the normal incentive for those 

highlights did not plainly isolate the entrance designs. 

 

 We at that point rehash the examination procedure utilizing the new list of capabilities. This iterative 

procedure prompts a long list of capabilities for all entrance units, fairly decreasing the subjective inclination of 

a little list of capabilities. We list the picked highlights for each entrance unit.  

The greater part of the highlights utilized as a part of our investigations are clear as crystal. Some 

questionable or complex highlights require exact definitions, for example,  

I/O: We utilize I/O" as a substitute for read and compose" Successive processes or composes: We 

consider two read or composes solicitations to be consecutive in the event that they are back to back in time, and 

the le o set + ask for size of the principal ask for measures up to the le o set of the second demand. A solitary 

read or compose ask for is by definition not consecutive.  

Rehashe peruses or overwrites: We track gets to at 4KB piece limits inside a le, with the o set of the 

principal square being zero. A read is viewed as rehashed on the off chance that it gets to a piece that has been 

perused in the past half hour. We utilize an identical definition for overwrites.  

 

Identifying access designs through k-implies  

A key piece of our system is the k-implies multi-dimensional connection calculation. We utilize it to 

recognize get to designs at the same time crosswise over numerous highlights (Step 4 in Figure 2). The research 

work shows that k-implies  a notable, factual relationship algorithm. It identifies sets of information focuses that 

gather around a locale in n-dimensional space. These assemblies are called groups.  

For each entrance unit, we separate different cases of it from the follow, i.e., all session examples, 

application occasions, les, and indexes. For each occasion, we process the numerical estimations of every one of 

its highlights. This gives us an information exhibit in which each line compares to an occurrence, i.e., an 

information point, and every segment relates to an element, i.e., a measurement. We input the exhibit into k-

implies, and the calculation finds the regular groups over all information focuses. We consider all information 

focuses in a bunch as having a place with a solitary comparability class, i.e., a solitary access design. The 

numerical estimations of the bunch focuses show the qualities of each entrance design.[4]  

We pick k-implies for two reasons. Initially, k-implies is algorithmically straightforward. This permits 

fast handling on extensive informational collections. We utilized a modified rendition of the k-implies C library, 

in which we made some minor alters to constrain the memory impression when preparing huge information 

sizes. Second, k-implies prompts instinctive names of the bunch focuses. This causes us decipher the 

measurable conduct separated from the follows into unmistakable bits of knowledge. Subsequently, we lean 

toward k-intends to other bunching calculations, for example, various levelled grouping and k-implies 

subordinates.  

K-implies expects us to determine k, the quantity of bunches. This is a di faction errand since we don't 

have the foggiest idea about from the earlier the quantity of natural" bunches in the information. As part of this 
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research work, we utilize a standard strategy to set k: increase k until there is lessening rate in the abatement of 

intra-bunch fluctuation, i.e., remaining change. Additional points of interest of the procedure shows up.  

We get a subjective measure of the clearness of bunch limits by taking a gander at the re-task of 

information focuses as we augment k. On the off chance that the bunches limits are clear, i.e., the information 

focuses fall into characteristic groups, at that point augmenting k would prompt a solitary group split into two, 

and the information focuses in alternate groups stay stationary. Then again, indistinct bunch limits are 

demonstrated by N to N + 1 improvements in information focuses with N 2. The bunch limits are clear for every 

one of the outcomes exhibited in this research work. There are maybe a couple occurrences of a twofold split, 

i.e., two bunches split into three, however every one of the three of the groups are saved when we facilitate 

increase k. Such a circumstance speaks to three generally equidistant common bunches being identified. In total, 

clear group limits would be demonstrated by a tree-like structure in the development of information focuses as 

we increment k. Figure 3 shows such a graphical portrayal, to the point that incorporates a twofold split. We 

verified that such a tree-like structure exists for all the k-implies comes about displayed in this part.  

 

Interpreting and summing up the outcomes  

The k-implies calculation gives us an arrangement of access designs with different attributes. We 

require extra data to comprehend the significance  

of the outcomes. This information originates from processing different optional information outside of 

k-implies examination. We assembled the begin and end times of every session occurrence, amassed by times of 

the day and days of the week. This gave us knowledge into how clients dispatch and end sessions.  

We inspect rename augmentations of les related with each entrance design having a place with these 

entrance units: application occasions, les, and most profound sub-trees. This information interfaces the entrance 

examples to all the more effortlessly conspicuous le augmentations. We perform connection examination 

between the le and most profound sub-trees get to units. Specifically, we register the quantity of les of every le 

get to design that is situated inside registries in each most profound sub-tree get to design. This data catches the 

associations of les in registries. Such data gives us a point by point picture about the semantics of the entrance 

designs, bringing about human reasonable marks to the entrance designs. Such marks enable us to make an 

interpretation of perceptions to plan suggestions.  

Besides, subsequent to distinguishing the plan suggestions, we investigate if the outline in-sights can be 

extrapolated to other follow periods and other stockpiling framework utilize cases. We achieve this by rehashing 

our correct investigation over numerous subsets of the follows, for instance, seven days of follows at once. This 

enable us to analyze how our examination would be different had we acquired just seven days' follow. Access 

patterns that are consistent, stable across different weeks would indicate that they are likely to be more general 

than just our tracing period or our use cases. 

(a). Descriptive features for each session 

 
Duration  Avg. time between I/O requests  Unique trees accessed 

Total I/O size  Read sequentiality   File opens  

Read:write ratio by bytes  Write sequentiality  Unique  les opened 

Total I/O requests  Repeated read ratio  Directories accessed 

Read:write ratio by requests  Overwrite ratio   Application instances seen 

Total metadata requests  Tree connects     

       

(b). Corporate session Full Half day Short Short Support- Support- 

access patterns day Content content content ing meta- ing read- 

 work Viewing viewing generate data write 

% of all sessions 0.5% 0.7% 1.2% 0.2% 96% 1.4% 

Duration 8 hrs 4 hrs 10 min 70 min 7 sec 10 sec 

Total I/O size 11 MB 3 MB 128 KB 3 MB 0 420 B 

Read:write ratio by bytes 3:2 1:0 1:0 0:1 0:0 1:1 

Metadata requests 3000 700 230 550 1 20 

Read sequentiality 70% 80% 0% - - 0% 

Write sequentiality 80% - - 90% - 0% 

File opens: les 200:40 80:15 30:7 50:15 0:0 6:3 

Tree connect:Trees 5:2 3:2 2:2 2:2 1:1 2:2 

Directories accessed 10 7 4 6 0 2 

Application instances 4 3 2 2 0 1 

       

(c). Engineering session Full Human App. Short Support- Machine 

access patterns day edit small generated content ing meta- generated 

 work Les backup generate data update 

% of all sessions 0.4% 1.0% 4.4% 0.4% 90% 3.6% 

Duration 1 day 2 hrs 1 min 1 hr 10 sec 10 sec 
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Total I/O size 5 MB 5 KB 2 MB 2 MB 0 36 B 

Read:write ratio 7:4 1:1 1:0 0:1 0:0 1:0 

Metadata requests 1700 130 40 200 1 0 

Read sequentiality 60% 0% 90% - - 0% 

Write sequentiality 70% 0% - 90% - - 

File opens: les 130:20 9:2 6:5 15:6 0:0 1:1 

Tree connect:Trees 1:1 1:1 1:1 1:1 1:1 1:1 

Directories accessed 7 2 1 3 0 1 

Application instances 4 2 1 1 0 1 

Table 2: Session access patterns. (a): Full list of descriptive features. (b) and (c): Short names and descriptions 

of sessions in each access pattern; listing only the features that help separate the access patterns 

 

Client Side Access Patterns 

This and the coming sections present the access patterns we identified and the accompanying design 

insights. We discuss client and serve side access patterns. We also check if these patterns persist across time. 

For each access unit, we list  

the descriptive features (only some of which help separate access patterns), outline how we derived the 

high-level name (label) for each access pattern, and discuss relevant design insights. 

Sessions 

Sessions reflect total conduct of human clients. We utilized 17 highlights to portray sessions (Table 2) 

The corporate follow has 509,076 sessions, and the building follow has 232,033.  

In Table 2, we give quantitative portrayals and short names for all the session get to designs. We get 

the names from looking at the significant cannot highlights: term, read-compose proportion, and I/O measure.  

We likewise took a gander at the total session begin and end times to get extra semantic learning about 

each entrance design.[5] Figures 4 and 5 demonstrate the begin and end times for chosen session get to designs. 

The begin times of corporate entire day work sessions compare precisely to the U.S. workday {9AM begin, 

12PM lunch, 5PM end. Corporate substance age sessions demonstrate slight increment at night and towards 

Friday, showing hurries to meet day by day or week after week due dates. In the building follow, the 

application-produced reinforcement and machine-created refresh sessions leave significantly from human 

workday and work-week designs, driving us to name them as application and machine (customer OS) produced.  

One shock was that the `supporting metadata' sessions represent >90% of all sessions in the two 

follows. We trust these sessions are not humanly created. They last around 10 seconds, leaving brief period for 

human intervened collaborations. Likewise, the session begin rate midpoints to approximately one for every 

representative for each moment. We are sure that clients are not interfacing and logging o each moment of the 

whole day. Be that as it may, the state of the begin  

time charts has a solid connection with the human workday and work week. We call these supporting 

metadata sessions {machine created in help of human client exercises. These metadata sessions shape a kind of 

\background clamor" to the capacity framework. We watch a similar foundation clamor at different layers both 

at customers and servers.  

Perception 1: The sessions with I/O sizes more prominent than 128KB are either perused just or 

compose, aside from the entire day work sessions (Table 2). These perceptions compare to the \half day content 

review," short substance seeing," and short con-tent produce" sessions in the corporate follow, and application 

created reinforcement" and short content create" sessions in the designing follow. Among these sessions, just 

read-just sessions use buffer store for rehashed peruses and pre-fetches.  

Compose just sessions just utilize the store to buffer composes. In this manner, on the off chance that 

we have a reserve expulsion strategy that perceives their compose just nature and discharges the buffers 

promptly on using filthy information, we can fulfill numerous compose just sessions with moderately little 

buffer store space. We can accomplish better union and buffer store use by dealing with the proportion of co-

found read-just and compose just sessions. Virtualization directors and customer working frameworks to deal 

with a mutual buffer store between sessions can utilize this knowledge. Perceiving such read-just and compose 

just sessions is simple. Analyzing a session's aggregate perused estimate and compose measure uncovers their 

read-just or compose just nature. Suggestion 1: Clients can combine sessions efficiently construct just with 

respect to the read-compose proportion. 

Observation 2: The full-day work" sessions do 10MB of I/O (Table 2). This means that a client cache 

of 10s of MB can t the working set of a day for most sessions. Given the growth of ash devices on clients for 

caching, despite large-scale consolidation, clients should easily cache a day's worth of data for all users. In such 

a scenario, most I/O requests would be absorbed by the cache, reducing network latency and bandwidth 

utilization, and load on the server. Moreover, complex cache eviction algorithms are unnecessary. Implication 2: 

Clients caches can already t an entire day's I/O. 
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Perception 3: The quantity of human-produced sessions and supporting session’s tops on Monday and 

abatements consistently to 80% of the top on Friday (Figure 3). There is extensive slack" in the server stack 

amid nights, lunch times, and not withstanding amid working hours. This infers the server can perform 

foundation errands, for example, consistency checks, upkeep, or pressure/deduplication, at suitable 

circumstances amid the week. A basic tally of dynamic sessions can fill in as a viable begin and stop flag. By 

figuring the zone under the bend for session begin times by days of the week, we gauge that foundation 

undertakings can crush out approximately one additional day of preparing without changing the pinnacle request 

on the framework. This is a half change over a setup that performs foundation undertakings just amid ends of 

the week. In the building follow, the application produced reinforcement or duplicate sessions appear to have 

been as of now outlined along these lines. Suggestion 3: Servers get an additional day" for foundation errands 

by running them at proper circumstances amid week-days. 

 

 
Figure 3: Graphical Representations of Human Produced Periodical Sessions 

 

Application instances 

 Application instance access patterns reflect application behaviour, facilitating application specific 

optimizations. We used 16 features to describe application instances (Table 3). The corporate trace has 138,723 

application instances, and the engineering trace has 741,319. 

 

Table 3 provides quantitative descriptions and short names for all the application instance access patterns. We 

derive the names from examining the read-write ratio, I/O size, and le extensions accessed (Figures 6 and 7). 

 

(a). Descriptive features for each application instance 
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Total I/O size  Read sequentiality File opens 

Read:write ratio by bytes  Write sequentiality Unique  les opened 

Total I/O requests by bytes  Repeated read ratio Directories accessed 

Read:write ratio by requests  Overwrite ratio  File extensions accessed 

Total metadata requests  Tree connects    

Avg. time between I/O requests  Unique trees accessed   

       

(b). Corp. app. instance  Viewing app Support- App gen- Viewing hu- Content 

access patterns  generated ing meta- erated  le man genera- update 

  content data updates ed content app 

% of all app instances  16% 56% 14% 8.8% 5.1% 

Total I/O  100 KB 0 1 KB 800 KB 3.5 MB 

Read:write ratio  1:0 0:0 1:1 1:0 2:3 

Metadata requests  130 5 50 130 500 

Read sequentiality  5% - 0% 80% 50% 

Write sequentiality  - - 0% - 80% 

Overwrite ratio  - - 0% - 5% 

File opens: les  19:4 0:0 10:4 20:4 60:11 

Tree connect:Trees  2:2 0:0 2:2 2:2 2:2 

Directories accessed  3 0 3 3 4 

File extensions accessed  2 0 2 2 3 

      

(c). Eng. app. instance  Compilation Support- Content up- Viewing hu- Content 

access patterns  app ing meta- date app - man genera- viewing 

   data small content app - small 

% of all app instances  1.6% 93% 0.9% 2.0% 2.5% 

Total I/O  2 MB 0 2 KB 1 MB 3 KB 

Read:write ratio  9:1 0:0 0:1 1:0 1:0 

Metadata requests  400 1 14 40 15 

Read sequentiality  50% - - 90% 0% 

Write sequentiality  80% - 0% - - 

Overwrite ratio  20% - 0% - - 

File opens: les  145:75 0:0 3:1 5:4 2:1 

Tree connect:Trees  1:1 0:0 1:1 1:1 1:1 

Directories accessed  15 0 1 1 1 

File extensions accessed  5 0 1 1 1 

Table 3: Application instance access patterns. (a): Full list of descriptive features. Almost identical to those for 

user sessions, with a new feature \ le extensions accessed", and two features no longer applicable | \duration" 

and \application instances seen". (b) and (c): Short names and descriptions of application instances in each 

access pattern; listing only the features that help separate the access patterns 

  

We see again the metadata background noise. The supporting metadata application instances account 

for the largest fraction, and often do not even open a le.  There are many les without a le extension, a 

phenomenon also observed in recent storage system snapshot studies. We notice that le extensions turn out to be 

poor indicators of application instance access patterns. This is not surprising because we separate access patterns 

based on read/write properties. A user could either view doc or create a .doc. The same application software has 

different read/write patterns. This speaks to the strength of our multi-layer framework. Aggregating I/O by 

application instances gives clean separation of patterns; while aggregating just by application software or le 

extensions will not.[6] 

We also find it interesting that most le extensions are immediately recognizable. This means that what 

people use network storage systems for, i.e., the le extensions, remains easily recognizable, even though how 

people use network storage systems, i.e., the access patterns, is ever changing and becoming more complex. 

Observation 4: The small content viewing" and  content update" application in-stances have <4KB total 

reads per le open and access a few unique les many times (Table 3). The small read size and multiple reads from 

the same les means that clients should pre-fetch and place the les in a cache optimized for random access ( ash 

SS-D memory). The trend towards ash caches on clients should enable this transfer. 

Application instances have bi-modal total I/O size - either less than 10KB, or 100KB-10MB. Thus, a 

simple cache management algorithm success; we always keep the first 2 blocks of 4KB in cache. If the 

application instance does more I/O, it is likely to have I/O size in the 100KB-1MB range, so we evict it from the 

cache. We should note that such a policy makes sense even though we proposed earlier to cache all 11MB of a 

typical day's working set - 11MB of cache becomes a concern when we have many consolidated clients. 

Implication 4: Clients should always cache the first few KB of I/O per le per application. 
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Figure 4: File extensions for corporate application instance access patterns. For each access pattern (column), 

showing the fraction of the two most frequent le extensions that are accessed together within a single application 

instance. \n.f.e." denotes les with no le extension". Application instances labelled with just one le extension 

accessed les with only one extension. 

 

Observation 5: We see >50% sequential read and write ratio for the content update" applications 

instances for corporate and the content viewing" applications instances for human-generated content for both 

corporate and engineering (Table 3). Dividing the total I/O size by the number of le opens suggest that these 

application instances are sequentially reading and writing entire les force productivity (.xls, .doc, .ppt, .pdf) and 

multimedia applications. 

This infers the les related with these applications ought to be pre gotten and designated to the customer. 

Pre bringing implies conveying the entire le to the customer before the entire le is asked. Designation implies 

giving a customer brief, restrictive access to a le, with the customer occasionally synchronizing to server to 

guarantee information toughness. CIFS does assignment utilizing deft locks, while NFSv4 has a committed 

activity for appointment. Pre getting and assignment of such les will enhance read and compose execution, bring 

down system activity, and relieve server burden.[7] 

The entrance designs again offer a straightforward, edge based choice calculation. On the off chance 

that an application example accomplishes more than 10s of KB of successive I/O, and has no overwrite, at that 

point it is probably going to be a substance survey or refresh application case; such les are pre-fetched and 

assigned to the customers. Suggestion 5: Clients can ask for le pre-fetch (read) and designation (compose) in 

view of just I/O sequentiality.  

Perception 6: Engineering applications with >50% successive peruses and >50% sequential composes 

are doing code assemble undertakings. We know  
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this from taking a gander at the le augmentations in Figure 4. These incorporate procedures indicate 

read sequentiality, compose sequentiality, a huge overwrite proportion and huge number of metadata 

demands.[9] They depend on the server intensely for information gets to. We require more nitty gritty customer 

side data to comprehend why customer stores are ineffectual for this situation. In any case, unmistakably the 

server reserve needs to pre bring the read les for these applications. The high percent-period of consecutive 

peruses and composes gives us another limit based calculation to recognize these applications. Suggestion 6: 

Servers can measurably distinguish assemble undertakings by the nearness of both successive peruses and 

composes; server needs to reserve the yield of these errands.  
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Figure 5: File extensions for engineering application instance access patterns. For each access pattern (column), 

showing the fraction of the two most frequent le extensions that are accessed together within a single application 

instance. \n.f.e." denotes les with no le extension". Application instances labelled with just one le extension 

accessed les with only one extension. 

 

Server Side Access Patterns  

As specified, we dissected two sorts of server side access units: les and most profound sub-trees.  
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Files  

Document get to designs help stockpiling server fashioners create per-le position and optimization 

strategies. We utilized 25 highlights to depict les (Table 4). Note that a portion of the highlights incorporate 

different percentiles of a trademark, e.g., read ask for estimate as percentiles of all read demands. We think 

including different percentiles instead of simply the normal would permit better partition of access designs. The 

corporate follow has 1,155,099 les, and the building follow has 1,809,571.  

In Table 4, we show quantitative depictions and short names for all the le get to designs. Figures 8 and 

9 give the most widely recognized le augmentations in each. [10] We inferred the names by analyzing the read-

compose proportion and I/O measure. For the building follow, inspecting the le expansions likewise 

demonstrated helpful, prompting names, for example, edit code and aggregate yield", and read-just log 

reinforcement".  

 We see that there are groupings of les with comparative expansions. For instance, in the corporate 

follow, the little irregular read get to designs incorporate numerous le augmentations associated with web 

program stores. Additionally, multi-media les like .mp3 and .jpg assemble in the successive read and compose 

get to designs. In the designing follow, code libraries bunch under the consecutive compose les, and read just 

log reinforcement les contain le extensions .0 to .99. Be that as it may, the most widely recognized le 

augmentations in each follow still spread crosswise over numerous entrance designs, e.g., office profitability les 

in the corporate follow and code les in the building follow. Observation 7: For les with >70% sequential reads or 

sequential writes, the repeated read and overwrite ratios are close to zero (Table 4). This implies that there is 

little benefit in caching these les at the server. They should be pre-fetched as a whole and delegated to the 

client.[11]  

 

(a). Descriptive features for each le 
 Number of hours with 1, 2-3, or 4  le opens  Read sequentiality   

 Number of hours with 1-100KB, 100KB-1MB, or >1MB reads Write sequentiality   

 Number of hours with 1-100KB, 100KB-1MB, or >1MB writes Read:write ratio by bytes 

 Number of hours with 1, 2-3, or 4 metadata requests Repeated read ratio 

 Read request size - 25th, 50th, and 75th percentile of all requests   Overwrite ratio   

 Write request size - 25th, 50th, and 75th percentile of all requests    

 Avg. time between I/O requests - 25th, 50th, and 75th percentile of all request pairs   

        

 (b). Corp.  le Metadata Sequent- Sequent- Small Smallest Small 

 access patterns only ial write ial read random random random 

     write read read 

 % of all  les 59% 4.0% 4.1% 4.7% 19% 9.2% 

 # hrs with opens 2hrs 1hr 1hr 1hr 1hr 1hr 

 Opens per hr 1 open 2-3 opens 2-3 opens 2-3 opens 1 open 1 open 

 # hrs with reads 0 0 1hr 0 1hr 1hr 

 Reads per hr - - 100KB-1MB - 1-100KB 1-100KB 

# hrs with writes 0 1hr 0 1hr 0 0 

 Writes per hr - 100KB-1MB - 1-100KB - - 

 Read request size - - 4-32KB - 2KB 32KB 

Write request size - 60KB - 4-22KB - - 

Read sequentiality - - 70% - 0% 0% 

Write sequentiality - 80% - 0% - - 

 Read:write ratio 0:0 0:1 1:0 0:1 1:0 1:0 

        

 (c). Eng.  le Metadata Sequent- Small Edit Sequent- Read- 

 access patterns only ial write random code & tial read only log/ 

    read compile  backup 

 % of all  les 42% 1.9% 32% 7.3% 8.3% 8.1% 

 # hrs with opens 1hr 1hr 1hr 1hr 1hr 2hrs 

 Opens per hr 1 open 2-3 opens 2-3 opens 2-3 opens 2-3 opens 2-3 opens 

 # hrs with reads 0 0 1hr 1hr 1hr 2hrs 

 Reads per hr - - 1-100KB 1-100KB 1-100KB 1-100KB 

# hrs with writes 0 1hr 0 0 0 0 

 Writes per hr - >1MB - - - - 

 Read request size - - 3-4KB 4KB 8-16KB 1KB 

Write request size - 64KB - - - - 

Read sequentiality - - 0% 0% 70% 0% 

Write sequentiality - 90% - - - - 

Repeated read ratio - - 0% 50% 0% 0% 

 Read:write ratio 0:0 0:1 1:0 1:0 1:0 1:0 

Table 4: File access patterns. (a): Full list of descriptive features. (b) and (c): Short names and descriptions of 

les in each access pattern; listing only the features that help separate the access patterns 
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Once more, the bimodal I/O sequentiality offers a basic calculation for the server to identify which les 

ought to be pre-brought and assigned { if a le has any successive access, it is probably going to have a high level 

of consecutive access, hence it ought to be pre-fetched and designated to the customer. Future stockpiling 

servers can recommend such data to customers, prompting  assignment demands. Suggestion 7: Servers should 

assign successively got to les to customers to enhance I/O execution.  

Perception 8: In the building follow, just the alter code and incorporate yield les have a high % of 

rehashed peruses (Table 4). Those les ought to be assigned to the customers also. The rehashed peruses don't 

appear in the building application examples, potentially on the grounds that an assemblage procedure dispatches 

numerous kid forms over and again perusing similar les. Every tyke procedure peruses \fresh information," 

despite the fact that the server sees rehashed peruses. With bigger memory or powder reserves at customers,[12] 

we anticipate that this conduct will drop. The working set issues that prompt this situation need to be analyzed. 

On the off chance that the rehashed peruses originate from a solitary customer, at that point the server can 

recommend that the customer reserve the proper les.  

We can again utilize an edge based calculation. Recognizing any rehashed peruses at the server flags 

that the le ought to be assigned to the customer. Even from a pessimistic standpoint, just the first few peruses 

will hit the server. Consequent rehashed peruses are ceased at the customer. Suggestion 8: Servers should 

appoint over and over read les to customers.  

We can again utilize a limit based calculation. Recognizing any rehashed persuals at the server flags 

that the le ought to be appointed to the customer. Best case scenario, just the first few peruses will hit the server. 

Resulting rehashed peruses are ceased at the customer. Suggestion 8: Servers should assign over and again read 

les to customers.  

Perception 9: Almost all les are dynamic (have opens, I/O, and metadata access) for just 1-2 hours over 

the whole follow period, as demonstrated by the run of the mill opens read compose action of all entrance 

designs (Table 4). There are some consistently got to les, yet they are few to the point that they don't influence 

the k-implies examination. The absence of standard access for most les implies that there is space for the server 

to utilize procedures to build limit by doing compaction on sit still les.[13] 

Basic procedures incorporate deduplication and pressure. The movement on these les demonstrate that 

the I/O execution effect ought to be little. Regardless of whether run continually, compaction has a low 

likelihood of influencing a dynamic le. Since normal libraries like gzip enhance for decompression, 

decompressing les at read time ought to have just slight execution affect. Suggestion 9: Servers can utilize le sit 

without moving time to pack or deduplicate information to expand capacity limit. 

 
Figure 6: File extensions for corporate les. Fraction of le extensions in each le access pattern 
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Observation 10: All les have either all random access or >70% sequential access (Table 4). The small 

random read and write les in both traces can benefit from being placed on media with high random access 

performance, such as solid state drives (SSDs). Files with a high percentage of sequential accesses can reside on 

traditional hard disk drives (HDDs), which already optimize for sequential access. The bimodal I/O 

sequentiality offers yet another threshold-based placement  algorithm { if a le has any sequential access, it is  

likely to have a high percentage of sequential access; therefore place it on HDDs. Otherwise, place it 

on SSDs. We note that there are more randomly accessed les than sequentially accessed les.[14] Even though 

sequential les tend to be larger, we still need to do a working set analysis to determine the right size of server 

SSDs for each use case. Implication 10: Servers can select the best storage medium for each le based only on 

access sequentiality. 

 

 

Figure 7: File extensions for engineering les. Fraction of le extensions in each le access pattern 

 

Deepest sub trees 

Deepest sub tree access patterns help storage server designers develop per-directory policies. We use 

the phrase \deepest sub tree" as a more precise alternative to directories". In particular, for hierarchical directory 

structures  

of the form A/B, data accesses to les A/file are counted as deepest sub tree A, while data accesses to les 

A/B/file are counted separately as deepest sub tree A/B. 

We used 40 features to describe deepest sub trees (Table 5). Some of the features include different 

percentiles of a characteristic, e.g., per le read sequentiality as percentile of all les in a directory. Including 

different percentiles rather than just the average allows better separation of access patterns. The corporate trace 

has 117,640 deepest sub trees, and the engineering trace has 161,858. 

In Table 5.5, we provide quantitative descriptions and short names for all the deepest 

(a). Descriptive features for each subtree 

Number of hours with 1, 2-3, or 4 le opens 
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Number of hours with 1-100KB, 100KB-1MB, or >1MB reads 

Number of hours with 1-100KB, 100KB-1MB, or >1MB writes 

Number of hours with 1, 2-3, or 4 metadata requests 

Read request size - 25th, 50th, and 75th percentile of all requests Write request size - 25th, 50th, and 75th 

percentile of all requests 

Avg. time between I/O requests - 25th, 50th, and 75th percentile of all request pairs 

Read sequentiality - 25th, 50th, and 75th percentile of les in the subtree, and aggregated across all les 

Write sequentiality - 25th, 50th, and 75th percentile of les in the subtree, and aggregated across all les 

Read:write ratio - 25th, 50th, and 75th percentile of les, and aggregated across all les 

Repeated read ratio - 25th, 50th, and 75th percentile of les, and aggregated across all les 

Overwrite ratio - 25th, 50th, and 75th percentile of les, and aggregated across all es 

 
(b). Corp. subtree Temp Client Mixed Meta- Mixed Small 

access patterns real cacheable read data write random 

 data   only  read 

% of all subtrees 2.3% 4.1% 5.6% 64% 3.5% 21% 

# hrs with opens 3hrs 3hrs 2hrs 2hrs 1hr 1hr 

Opens per hr >4 opens 1 open 1 open 1 open >4 opens >4 opens 

# hrs with reads 3hrs 2hrs 1hr 0 0 1hr 

Reads per hr 1-100KB 1-100KB 1-100KB - - 1-100KB 

# hrs with writes 2hrs 0 0 0 1hr 0 

Writes per hr 0.1-1MB - - - >1MB - 

Read request size 4KB 4-10KB 4-32KB - - 1-8KB 

Write request size 4KB - - - 64KB - 

Read sequentiality 10-30% 0% 50-70% - - 0% 

Write sequentiality 50-70% - - - 70-80% - 

Repeat read ratio 20-50% 50% 0% - - 0% 

Overwrite ratio 30-70% - - - 0% - 

Read:write ratio 1:0 to 0:1 1:0 1:0 0:0 0:1 1:0 

       

(b). Eng. subtree Meta- Small Client Mixed Sequen- Temp 

access patterns data random cacheable read tial real 

 only read   write data 

% of all subtrees 59% 25% 6.1% 7.1% 1.9% 1.3% 

# hrs with opens 1hr 1hr 1hr 1hr 1hr 3hrs 

Opens per hr 2-3 pens >4 opens >4 opens >4 opens >4 opens >4 opens 

# hrs with reads 0 1hr 1hr 1hr 0 3hrs 

Reads per hr - 1-100KB 1-100KB 0.1-1MB - 1-100KB 

# hrs with writes 0 0 0 0 1hr 1hr 

Writes per hr - - - - 0.1-1MB 1-100KB 

Read request size - 1-4KB 2-4KB 8-10KB - 4-32KB 

Write request size - - - - 32-60KB 4-60KB 

Read sequentiality - 0% 0% 40-70% - 10-65% 

Write sequentiality - - - - 70-90% 60-80% 

Repeat read ratio - 0% 50-60% 0% - 0-40% 

Overwrite ratio - - - - 0% 0-30% 

Read:write ratio 0:0 1:0 1:0 1:0 0:1 1:0 to 0:1 

Table 5: Deepest sub tree access patterns. (a): Full list of descriptive features. Compared with the features list in 

Table 4, the changes are that read sequentiality, write sequentiality, read: write ratio, repeated read ratio, and 

overwrite ratio changed from a single statistic for a le to 25th, 50th, and 75th percentile of all les aggregated in a 

directory. (b) and (c): Short names and descriptions of sub trees in each access pattern; listing only the features 

that help separate access patterns 
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Figure 8: File extensions for corporate deepest sub trees. Fraction of le extensions in deepest subtree access 

patterns 

 

For instance, the random read" and client cacheable" marks originate from taking a gander at the I/O 

designs. Temporary indexes" represented the .tmp les in those directories. Mix read" and \mix express" catalogs 

considered the nearness of both successive and arbitrarily got to les in those indexes.  

The metadata foundation clamor stays unmistakable at the sub-tree layer. The spread of le 

augmentations is like that for le get to designs {some le expansions assemble and others spread equitably. 

Strangely, some sub trees have an expansive part of les for which just the metadata gets got to.  

Some sub trees contain just les of a solitary access design (e.g., little arbitrary read sub trees in Figures 

12). There, we can apply the outline bits of knowledge from the le get to examples to the whole sub tree. For 

instance, the little arbitrary read sub trees can dwell on SSDs. Since there are a larger number of les than sub 

trees, per-sub tree strategies can bring down the measure of approach data kept at the server.[15] 

Interestingly, the blend read and blend compose registries contain both consecutive and randomly got 

to les. Those sub trees require per-le approaches: Place the consecutively got to les on HDDs and the 

haphazardly got to les on SSDs. Delicate connects to les can save the client confronting index association, while 

enabling the server to advance per-le nutriment. The server ought to naturally choose when to apply per-le or 

per-sub tree approaches. 

Perception 11: Directories with successively got to les quite often contain haphazardly got to les 

likewise (Figures 12 and 13). On the other hand, a few catalogs with arbitrarily get to les won't contain 

consecutively got to les. In this manner, we can default all sub trees to per-sub tree arrangements. 

Simultaneously, we track the I/O sequentiality per sub tree. On the off chance that the sequentiality is over some 

edge, at that point the sub tree changes to per-le arrangements. Suggestion 11: Servers can change from per-

registry arrangement strategy (default) to per-le approach after observing any consecutive I/O to any les in an 

index. with rehashed peruses or overwrites (Table 5 and Figures 12 and 13). Extra calculation demonstrated that 

the rehashed peruses and overwrites quite often originate from a solitary customer. In this way, it is workable 

for the whole catalog to be pre-brought and dele-gated to the customer. Designating whole registries can pre-



American Journal of Engineering Research (AJER) 2018 
 

 
w w w . a j e r . o r g  

 

Page 112 

endeavour all gets to that are nearby to a catalog, however expends customer reserve space. We have to 

comprehend the tradeoffs through a more inside and out working set and transient area investigation at both the 

le and most profound sub tree levels. Suggestion 12: Servers can designate rehashed read and overwrite catalogs 

totally to customers, tradeoffs following. 

 

 
Figure 9: File extensions for engineering deepest sub trees. Fraction of le extensions in deepest sub tree access 

patterns 

 

Architectural Trends 

It offered many specific optimizations for placement, caching, delegation, and consolidation decisions. 

We combine the insights here to speculate on the architecture of future enterprise storage systems.[18] 

We see a clear separation of roles for clients and servers. The client design can target high I/O 

performance by a combination of efficient delegation, pre-fetching and caching of the appropriate data. The 

servers should focus on increasing their aggregated efficiency across clients: collaboration with clients (on 

caching, delegation, etc.) and exploiting user patterns to schedule background tasks. Automating background 

tasks such as online data de-duplication delivers capacity savings in a timely and hassle-free fashion, i.e., 

without system downtime or explicit scheduling. Regarding caching at the server,[19] we observe that very few 

access patterns suggest how to improve server's buffer cache for data accesses. Design insights 4-6, 8 and 12 

indicate a heavy role for the client cache and Design insight 7 suggests how not to use the server buffer cache - 

caching metadata only and acting as a warm/backup cache for clients would result in lower latencies for many 

access patterns. 

We also see simple ways to take advantage of new storage media such as SSDs. The clear identification 

of sequential and random access le patterns enables efficient device-specific data placement algorithms (Design 

insights 10 and 11). Also, the background metadata noise seen at all levels suggests that storage servers should 

both optimize for metadata accesses and redesign client-server interactions to decrease the metadata chatter. 
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Depending on the growth of metadata and the performance requirements, we also need to consider placing 

metadata on low latency, non-volatile media like ash or SSDs. 

 Furthermore, we believe that storage systems should introduce many monitoring points to dynamically 

adjust the decision thresholds of placement, caching, or consolidation policies. We need to monitor both clients 

and servers. For example, when repeated read and overwrite les have been properly delegated to clients, the 

server would no longer see les with such access patterns.[20] Without monitoring points at the clients, we would 

not be able to quantify the le delegation benefits. Storage systems should make extensible tracing APIs to 

expedite the collection of long-term future traces. This will facilitate future work similar to ours. 

 

III. RESULTS & CONCLUSION 

We must address the storage technology trends toward ever-increasing scale, heterogeneity, and 

consolidation. Current storage design paradigms that rely on existing trace analysis methods are ill equipped to 

meet the emerging challenges because they are uni dimensional, focus only on the storage server, and are 

subject to designer bias. We showed that a multi-dimensional, multi-layered trace-driven design methodology 

leads to more objective design points with highly targeted optimizations at both storage clients and servers. 

Using our corporate and engineering use cases, we present a number of insights that inform future designs. We 

described in some detail the access  

patterns we observed, and we encourage fellow storage system designers to extract further insights 

from our observations. 

Storage system designers face an increasing challenge to anticipate access patterns. This chapter builds 

the case that system designers can no longer accurately anticipate access patterns using intuition only. We 

believe that the corporate and engineering traces from the NetApp corporate headquarters would have similar 

use cases at other traditional and high-tech businesses. Other use cases would require us to perform the same 

trace collection and analysis process to extract the same kind of empirical insights. We also need similar studies 

at regular intervals to track the evolving use of storage system. We hope that this chapter contributes to an 

objective and principled design approach targeting rapidly changing data access patterns. 

In the broader context of the dissertation, the analysis here and in applies the methodology presented 

into helps us understand the behaviour of different kinds of large-scale data-centric systems. The subsequent 

chapters leverage the workload insights developed thus far to solve some system design problems beyond those 

that immediately follow from the workload behaviour observations. Specifically, seeks to improve Map Reduce 

energy efficiency. quantities the performance implications of TCP in cast. While these two design problems are 

not immediately related to workload management, an understanding of workload behaviour is vital to 

developing a solution. 
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