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I. INTRODUCTION 
An interesting problem in Fourier analysis is to extend the classical inequalities of the Fourier 

transform , or what Hardy and Littlewood refer to as the theory of Fourier  constant [5] , to tempered 

distributions that correspond to lower -dimensional sets.Prticularly important theorems are the 𝐿1 

inequality known as Hardy’s inequality with the McGehee-Pigono- Smith ( henceforth M . P .S 

.)generalization .[7], the Plancherel theorem for 𝐿2 and Payley’s theorem with the Pitt-Stein 

[generalization for𝐿𝜀+1  , 0 < 𝜀 ≤ 1.Extensions of the Plancherel theorem for measures supported on 

manifolds in𝑅𝑛   have been established by Agmon and Hormander[1], and more recently by Strichartz  

[9] for measures on 𝑅𝑛  of dimension−1 < 𝜀 < 𝑛 − 1 ,1 + 𝜀 not necessarily an integer . We show ,in 

the same methodology, an  application on the paper ofSteve Hudson and Mark Leckband[11],  they 

proved a generalized Hardy inequality  ( henceforth g.h.i ) for fractal measures on 𝑅1 of dimension 
 1 − 𝜀 , 0 < 𝜀 ≤ 1 .This result includes the M.P.S. version as the periodic case forε = 1.Each of the 

result above for𝜀 < 𝑛 − 1 involves a limit on the Fourier transform side and provides information in 

the form of an asymptotic growth estimate for the transform  

Some regularity will be required of the support of the fractal measure classically, Hardy’s 

inequality and the M.P.S version hold only for measure. Supported on a well ordered set of integers, 

which means the transform of the measure is in 𝐻1of the unit circle , at least up to a multiplicative 

factor of 𝑒𝑖𝑛𝜋  . The well – known inequalities above, in which 𝜀 > 0, are rearrangement – invariant , 

while Hardy’s inequality is not . This implies that the nature of the support of the measure when 

𝜀 = 1 𝑜𝑟 𝜀 = 0 is for more important in Hardy’s inequality than in the others. Likewise,when 

0 < 𝜀 < 1 , it is natural to expect the support of the measure to play a greater role in 𝑔. . 𝑖, then in the 

other inequalities . This point may be clarified by the last result of the paper , an extension of Paley’s 

theorem for 0 − dimensional measures , this is a  𝜀 > 0  analogue of  𝑔. . 𝑖  in which the support is 

quite arbitrary (see [11]) . 

Aseries of   fractal measures means a measure 𝜈𝑟supported on a set 𝐸𝑟 ⊂ 𝑅1 . That is 𝜇1−𝜀  - 

measurable, where 𝑑𝜇1−𝜀  is  1 − 𝜀  -dimensional Hausdorff measures and0 ≤ 𝜀 ≤ 𝟏  . Certain 

classes of such measure will be studied including measure supported a self – similar sets such as the 

cantor set . 

     It assumed that𝜈𝑟   is finite, so it is a tempered distribution with a Fourier transform locally in 

𝐿1(𝑅) . It is also assumed that𝜈𝑟   is either positive , or is of the form𝑓𝑟𝑑𝜇1−𝜀  . In the latter case , let 

𝐸𝑟 = {𝑥: 𝑓𝑟(𝑥) ≠ 0}, which we will refer to as supp 𝑓𝑟 .Definethe series  
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 𝜎1−𝜀
𝑟  𝐸𝑟 , 𝑥 

𝑟≥1

=  𝜇1−𝜀 𝐸𝑟 ∩  −∞, 𝑥  .

𝑟≥1

                                                                    (1.1) 

Consider the followingseries of  generalized Hardy inequality (see [11])𝑔. . 𝑖for 0 ≤ 𝜀 ≤ 1 

  
 𝑓𝑟 𝑥  𝑑𝜇1−𝜀(𝑥)

𝜎1−𝜀
𝑟 (𝐸𝑟  , 𝑥)

𝑟≥1

∞

−∞

≤ lim
𝐿→∞

inf 𝐿𝜀   𝐶𝑟

𝑟≥1

 𝑓𝑟

∞

−∞

𝑑𝜇1−𝜀 𝑥  𝑑𝑥                                          (1.2) 

where 𝐶𝑟  is a constant that may depend on 𝐸𝑟  but not 𝑓𝑟  .This inequality does not hold for general 

fractal measures . The collective statement of Theorem 1 and 3 is that𝑔. . 𝑖 holds wherever 𝐸𝑟  is 

(1 − 𝜀)- coherent, see Definition 2below . Theorem 3 also holds for quasi – regular sets , see 

Definition 2 

Before defining coherence, certain problems with sets of measure zeromust be dealt with.For ∈ 𝑅 ,
𝑎𝑛𝑑  𝛿 > 0 , let 𝐼𝛿(𝑥)be the open interval (𝑥 − 𝛿, 𝑥 + 𝛿) and let 𝐼𝛿 = 𝐼𝛿(0). Suppose that𝐸𝑟 ⊂
𝑅1is𝜇1−𝜀-measurable , with 0 < 𝜇1−𝜀(𝐸𝑟) < ∞ . The upper density of  𝐸𝑟   at 𝑥 is defined by  

 𝐷1−𝜀      

𝑟≥1

 𝐸𝑟 , 𝑥 = lim
𝑗→0

sup  
𝜇1−𝜀(  𝐸𝑟 ∩ 𝐼𝑗   𝑥 )

(2𝑗)1−𝜀

𝑟≥1

                                                       (1.3) 

Then  𝐷1−𝜀      
𝑟≥1  𝐸𝑟 , 𝑥 = 0 for 𝜇1−𝜀 − 𝑎. 𝑒 . 𝑥 ∉   𝐸𝑟  . And for 𝜇1−𝜀 − 𝑎. 𝑒 .1 − 𝜀 ∈  𝐸𝑟  one has 

that21−𝜀 ≤ 𝐷1−𝜀       (𝐸𝑟 , 𝑥) ≤ 1. So 𝐸𝑟agrees𝜇1−𝜀 − 𝑎. 𝑒.with its “ Lébesgue set “  

 𝐸𝑟
∗

𝑟≥1

=   𝑥 ∈ 𝐸𝑟 : 21−𝜀  ≤ 𝐷1−𝜀       𝐸𝑟 , 𝑥 ≤ 1 

𝑟≥1

.  

It is not really necessary that 𝐸𝑟  have finite measure . Given𝑥 ∈ 𝑅  , let (𝐸𝑟)𝑥 = 𝐸𝑟 ∩ (−∞, 𝑥] . It will 

always be assumed that𝜇1−𝜀  𝐸𝑟 𝑥 < ∞  for some 𝑥 , for otherwise𝑔. . 𝑖 is trivial . Let 𝑠 =
sup  {𝑥: 𝜇1−𝜀 𝐸𝑟 𝑥 < ∞}𝑟≥1  . Notice(𝐸𝑟)𝑠  is 𝜎𝑟  − finte with respect to 𝜇1−𝜀 , so the result above 

still apply , (𝐸𝑟)𝑠  agrees 𝜇1−𝜀 − 𝑎. 𝑒 with (𝐸𝑟)𝑠 . Let 𝐸𝑟
0

𝑟≥1 =  (𝐸𝑟)𝑠𝑟≥1  and  (𝐸𝑟
0)𝑟≥1 𝑥

=

 𝐸𝑟
0 ∩ (−∞, 𝑥)𝑟≥1  . Given sets 𝐴and A + 𝜀 , let 2𝐴 + 𝜀 = {2𝑎 + 𝜀: 𝑎 ∈ 𝐴 }. 

Definition 1 : Let   𝐸𝑟 ⊂ 𝑅is coherent if there is a constant  𝐶𝑟such that for all𝑥 ≤ 𝛿 

lim sup
𝛿→0

  (𝐸𝑟
0)𝑥 + 𝐼𝛿  

𝑟≥1

𝛿𝜀 ≤   𝐶𝑟𝜇1−𝜀(𝐸𝑟
0)𝑥                                                         (1.4)

𝑟≥1

 

This definition depends on the value of 1 − 𝜀 , which will normally be understood. If there is any risk 

of confusion we will call the set (1 − 𝜀) -coherent . The inequality in the definition can always be 

reversed ( if  𝐶𝑟
𝑟≥1 = 1) by the definition of Hausdorff measure . The right – hand side is equal to 

  𝐶𝑟
𝑟≥1  . 𝜇1−𝜀 𝐸𝑟 𝑥  and to  𝐶𝑟

𝑟≥1 − 𝜎1−𝜀
𝑟  (𝐸𝑟 , 𝑥) . It is necessary to use  (𝐸𝑟

0)𝑥𝑟≥1  rather 

than (𝐸𝑟)𝑥𝑟≥1  because sets of measure zero could greatly affect the left – hand side. 

The results in this paper (see [11]) appear with the Fourier transform on the right - hand side, though 

it is more usual to have it on the left. It makes little difference when𝜀 = 1  , at least in the periodic 

case, or when 𝜀 = 0, but for dimensions in between it matters, because Fourier inversion is not clear. 

Also, in the case 𝜀 = 1  it matters for almost –periodic functions. Each of these functions defines a 

unique Fourier series, but that series does not converge to unique function in the 𝐵1+𝜀   𝑎. 𝑝. 
.pseudonorm [3] . 

The fundamental case is𝜀 = 1  . The𝑀. 𝑃. 𝑆  result is the important subcase in which the Fourier 

transform of the zero – dimensional measure is periodic.The immediate corollary is a proof of the 

celebrated Littlewood conjecture for trigonometric polynomials. In the same way, an immediate 

corollary of𝑔. . 𝑖. is an(𝜀 + 1) -dimensional version of Littlewood'sconjecture. 

The right –hand side of (1.2) is a natural substitute for the 𝐿1 norm of the Fourier transform of an 

(𝜀 + 1) - dimensional measure . It resembles terms studied in [3,10] , for example . However, it is 

usually impossible to compute exactly, and difficult even to determine whether it is finite. For asimple 

application of 𝑔. . 𝑖., let 𝑓𝑟 = 𝜒𝐸𝑟
 , where 𝐸𝑟  is an(1 + 𝜀)- coherent or quasi – regular set , for 

example , a cantor set contained in the unit interval of dimension 𝜀 + 1 . Then (1.2)show that (see 

[11]) 
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lim
𝐿→∞

inf 𝐿𝜀    𝜒𝐸𝑟
𝑑𝜇𝜀−1  

𝐿

−𝐿

𝑑𝑥

𝑟≥1

= +∞                                            (1.5) 

This result is non-trivial, the liminf can converge to 0if 𝐸𝑟 is not coherent. 

see (4.3). However, it may not be best-possible in the sense thata smaller exponent of𝐿on the left-hand 

side might produce the same   result. The question of sharpness seems to be more complicated in this 

context than in the  𝐿2setting (see [10]).  

The results of this paper (see [11]) are organized in the following manner. Section 2is devoted to 

establishing g.h.i. for the integer dimensions  𝜀 = 0 𝑎𝑛𝑑 𝜀 = 1 which are Theorems 1 and 2, 

respectively. It should be noted that lim inf  can be replaced by lim in these dimensions. Section 3 

discuses 𝑔. . 𝑖  for themore difficult case  0 < 𝜀 < 1 . 

The extensions of Plancherel’s theorem by Strichartz [10] involve smoothing out the distribution, 

applying the classical Plancherel theoremand approximation arguments. Approximation arguments 

are used inTheorems 1 of this paper to handle the 0-dimensional case. Theproofs for the general 

cases, Theorems 2 and 3, are from the ground up inthe sense that the 𝑀. 𝑃. 𝑆. machinery is modified 

for this setting while the𝑀. 𝑃. 𝑆. result is not used directly. 

2-Thefirst Theorem uses the class 𝐵. 𝑎. 𝑝of almost periodic function discussed in [2]Besicovitch. 

These are the almost – periodic functions𝑢𝑟  for which the 

pseudonormlim𝐿→∞ sup 𝐿−1 ∫   𝑢𝑟  𝑟≥1
𝐿

−𝐿
𝑑𝑥 is finite. If 𝑢𝑟  is almost – periodic, then the limit of the 

right – hand side exists, so lim sup may be replaced by lim . Every trigonometric polynomial is almost 

–periodic and is in 𝐵. 𝑎. 𝑝. The Fourier series of a 𝐵. 𝑎. 𝑝. functions𝑢𝑟converges to 𝑢𝑟  in the 

pseudonorm above , but may also converge to other 𝐵. 𝑎. 𝑝functions – the series does not determine 

𝑢𝑟 . 

Theorem 1: Let 𝑓𝑟𝑑𝜇0𝑟≥1 be a zero – dimensional measure defined by 

 𝑓𝑟 𝑥 =   𝐶1−𝜀
𝑟 𝛿(𝑥 − 𝑎1−𝜀)

∞

𝜀=0𝑟≥1𝑟≥1

 

where𝑎1 < 𝑎2 … < and 𝛿 is the usual Dirac measure at zero . Assume 

 𝑓 𝑟≥1
𝑟
𝑑𝜇0 =   𝑐𝑟

1−𝜀𝑒
𝑖𝑎1−𝜀𝑥

𝑟≥1  belongs to 𝐵. 𝑎. 𝑝  . Then 

   
𝐶1−𝜀

𝑟

1 − 𝜀
 

∞

𝜀=0𝑟≥1

≤ lim
𝐿→∞

𝐿−1  𝐶𝑟

𝑟≥1

  𝑓𝑟𝑑𝜇0(𝑥)  𝑑𝑥

𝐿

−𝐿

                                      (2.1) 

Proof : First assume that [𝑎1−𝜀]is a finite sequence with 𝑁 terms that 𝑓 𝑟𝑑𝜇0 is a polynomial . 

Let𝜀 > 0. By a lemma of Dirichlet , there are infinitely many integers𝐿𝑖  with numbers {𝑎1−𝜀 } ∈ 𝑍 𝐿𝑖  

such that  𝑎1−𝜀 − 𝑎 1−𝜀  < 𝜀 𝐿𝑖  for all 1 − 𝑁 ≤ 𝜀 ≤ 1. 

Let  𝑢𝑖
𝑟 𝑥 𝑟≥1 =   𝐶1−𝜀

𝑟 𝑒𝑖𝑑1−𝜀𝑥
𝑟≥1  . Then for 𝑥 ∈  −𝐿𝑖 , 𝐿𝑖 𝑢𝑖

𝑟(𝑥) 

 

  𝑓 𝑟𝑑𝜇0 − 𝑢𝑖
𝑟(𝑥) 

𝑟≥1

≤  𝐶𝑟

𝑟≥1

  𝑐1−𝜀
𝑟   𝑎1−𝜀 − 𝑎 1−𝜀   𝑥 ≤  𝐶𝜀

𝑟

𝑟≥1

  𝑐1−𝜀
𝑟   

Since𝑢𝑖
𝑟   is periodic we may apply 𝑀. 𝑃. 𝑆 

   
𝑐1−𝜀

𝑟

1 − 𝜀
 

𝑟≥1

≤

𝜀=0

 𝐶𝑟

𝑟≥1

𝐿𝑖
−2   𝑢𝑖

𝑟 𝑥  𝑑𝑥  ≤  𝐶𝑟𝐿𝑖
−1   𝑓 𝑟𝑑𝜇0 𝑑𝑥  𝐶𝜀

𝑟

𝑟≥1

𝐿𝑖

−𝐿𝑖𝑟≥1

𝐿𝑖

−𝐿𝑖

  𝑐𝜀
𝑟   

 

Taking limits as𝑖 → ∞  and then as 𝜀 → 0 proves (2.1) in this case . 

For the general case , we will approximate using Bohner – Fejer polynomials.  [3] Given  𝑢𝑟
𝑟≥1 =

 𝑓 𝑟𝑑𝜇0(𝑥)𝑟≥1 ∈ 𝐵. 𝑎. 𝑝.  , there exists a sequence of polynomials{𝜎𝑛
𝑟}  of the form 

 𝜎𝑛
𝑟 𝑥 =   𝑐𝜀−1

𝑟(𝑛)
𝑒𝑖𝑎1−𝜀𝑥

𝑁(𝑛)

𝜀=0𝑟≥1𝑟≥1
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( where the frequencies𝜎1−𝜀
𝑟

ka  are the same as those of𝑓 𝑟𝑑𝜇0 ) such that 

  𝑢𝑟𝜎𝑛
𝑟 𝐵𝑎𝑝

𝑟≥1

= lim
𝐿→∞

sup 𝐿−1    𝑢𝑟𝜎𝑛
𝑟  

𝑟≥1

𝐿

−𝐿

𝑑𝑥 ≤ 2−𝑛                                                (2.2) 

and 

 lim
𝑛→∞

𝑐𝜀−1
𝑟 𝑛 

= 

𝑟≥1

 𝑐𝜀−1
𝑟

𝑟≥1

          𝑓𝑜𝑟 𝑒𝑎𝑐   𝜀 − 1   .              (2.3) 

We have proven the theorem for suchpolynomials. So using Fatou’sLemma for sums, and the fact that 

limits exist for 𝐵. 𝑎. 𝑝.,functions 

  
𝑐𝜀−1

𝑟

𝜀 − 1
≤ inf  

𝑐𝜀−1
𝑟

𝜀 − 1
𝑟≥1

∞

𝜀=0𝑟≥1

 
𝑐𝜀−1

𝑟

𝜀 − 1
 ≤ lim

𝑛→∞
inf lim

𝐿→∞
𝐿−1  𝐶𝑟

𝑟≥1

  𝑢𝑟  

𝐿

−𝐿

 𝑢𝑟 − 𝜎𝑛
𝑟  

𝑁(𝑛)

𝜀=0

 

This proves the theorem . 

Given𝑥 ∈ 𝑅   ,0 ≤ 𝜀 ≤ 1  , and a set 𝐸𝑟 ⊂ 𝑅 , let  

 𝜎1−𝜀
𝑟  𝐸𝑟  , 𝑥 =  𝜇1−𝜀  (𝐸𝑟𝑛 −∞, 𝑥 )

𝑟≥1𝑟≥1

 

where𝜇1−𝜀  is Hausdorff measure . In the last theorem, the index 𝜀 − 1 could be written as 

𝜎0
𝑟( 𝑎𝜀−1 , 𝑥) . The next theorem provides a one dimensional analog. This result should be compared 

for 𝜀 = 0 . 

Theorem 2 : There is an absolute constant 𝐶𝑟  such that if 𝑢 𝑟 ∈ 𝐿1(𝑅) 

  
 𝑢𝑟(𝑥) 

𝜎1
𝑟 𝐸𝑟  , 𝑥 

≤    𝑐𝑟 𝑢 𝑟 𝐿1

𝑟≥1𝑟≥1𝑅

 2.4  

Where𝐸𝑟 = 𝑠𝑢𝑝𝑝 𝑢𝑟  . 
Proof :We claim that it is enough to prove (2.4) with𝜎1

𝑟 𝐸𝑟  , 𝑥  replaced by  𝜎1
𝑟 𝐸𝑟  , 𝑥 𝑟≥ +1.To 

prove this claim , assume (2.4) with  𝜎1
𝑟 𝑥 + 1  𝑟≥1 ,in the denominator . Given 𝑢 𝑟  ∈ 𝐿1 and 𝜀 < 1, 

 𝑟≥1 𝑣 𝑟 𝑥 =  𝑟≥1 (1 − 𝜀)𝑢 𝑟  ( 1 − 𝜀 𝑥. So, 

 𝑟≥1  𝜈𝑟 𝑥 =  𝑟≥1 𝑢𝑟 𝑥, 𝑦  𝑎𝑛𝑑  𝑟≥1 𝜎1
𝑟(sup  𝜈𝑟 ,  1 − 𝜀 −  1 − 𝜀 𝜎1

𝑟 𝐸𝑟  , 𝑥 ). 

   By changing variables and applying (2.4) to𝜈 ^𝑟 , we get. 

  

𝑟≥1

 𝑢𝑟 𝑥  𝑑𝑥

(1 − 𝜀)−1 + 𝜎1
𝑟(𝐸𝑟 , 𝑥)

≤

𝑅

  

𝑟≥1

  𝜈𝑟 𝑥  𝑑𝑥

1 + 𝜎1
𝑟(sup(1 + 𝜀) 𝜈𝑟 , 𝑥)

 ≤

𝑅

 

𝑟≥1

𝐶𝑟 𝑣 𝑟 𝐿1

=  

𝑟≥1

𝐶𝑟 𝑢 𝑟 𝐿1  

and let𝜀 → ∞  to get (2.4) for𝑢 𝑟   without the+1  in the denominator .  

Now the idea of the proof is the same as in 𝑀. 𝑃. 𝑆.we will construct functions 𝐹𝑚
𝑟  on  𝑅such that  

(1)  𝑟≥1 𝐹 𝑚
𝑟 is supported in   −∞, N m  where  𝑁 𝑚 → ∞ 𝑎𝑠 𝑚 → ∞.  

(2)  𝑟≥1  𝐹𝑚
𝑟  ∞ ≤ 1 . 

(3) 30 . 𝑅𝑒 𝑟≥1 𝐹𝑚
 𝑟

 𝑥 ≥  𝑟≥1  𝑢𝑟 𝑥  1 + 𝜎1
𝑟 𝐸𝑟 , 𝑥  for all 𝑥 ∈ 𝐸𝑟 ∩  −∞, 𝑁 𝑚  . 

Given such𝐹𝑚
𝑟   , the theorem follows easily if  𝑟≥1 supp 𝑢𝑟 ⊂  −∞, 𝑁 𝑚   for some 𝑚 then 

  

𝑟≥1

  𝑢𝑟 𝑥  𝑑𝑥

1 + 𝜎1
𝑟 𝐸𝑟 , 𝑥 

𝑅

≤   

𝑟≥1

𝐶𝑟 : 𝑅𝑒   

𝑟≥1

 𝑢𝑟 𝑥 𝐹𝑚
𝑟  𝑑𝑥

=   

𝑟≥1

𝐶𝑟 : 𝑅𝑒  

𝑟≥1

 𝑈𝑟 ∗ 𝐹𝑚
𝑟 (𝑚) 𝑑𝑥 ≤  

𝑟≥1

𝐶𝑟 𝑢 𝑟 𝐿1 𝐹𝑚
𝑟  𝐿∞

≤  

𝑟≥1

𝐶𝑟 𝑢 𝑟 𝐿1  
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An approximation argument shows that this inequality holds for all𝑢 𝑟  ∈ 𝐿1  . 

The construction of 𝐹𝑚
𝑟  follows 𝑀 . 𝑃 . 𝑆 .But here 𝐹𝑚

𝑟  is a function on 𝑅 instead of a sequence. For the 

sake of completeness, an outline of the construction follows.  

Let 𝑠0 =  𝑟≥1  𝑥 ∈ 𝐸𝑟 : 0 ≤ 𝜎1
𝑟 𝑥 ≤ 1 . Let 𝑠1 =  𝑟≥1  𝑥 ∈ 𝐸𝑟 : 1 ≤ 𝜎1

𝑟 𝑥 ≤ 5  .Define  

 𝑟≥1 {𝑆𝑖
𝑟}for  𝑖 > 1 in this manner so that  𝑆𝑖

𝑟  = 4𝑖and𝐸𝑟 =∪ 𝑆𝑖
𝑟   . 𝐿𝑒𝑡 𝑁 𝑚 = sup  𝑆𝑚

𝑟
𝑟≥1  . 

Define 𝑓𝑖
𝑟 ∈ 𝐿2 𝑅   by 

 

𝑟≥1

𝑓𝑖 
𝑟

= 0                               𝑓𝑜𝑟 𝑥 ∉ 𝑆𝑖
𝑟  

 

𝑟≥1

 𝑓𝑖 
𝑟
 = 4−𝑖                          𝑓𝑜𝑟 𝑥 ∈ 𝑆𝑖

𝑟  

 

𝑟≥1

𝑓𝑖 
𝑟
 𝑥 𝑢𝑟 𝑥 ≥ 0              𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 

Let 

 

𝑟≥1

𝑖
𝑟 =

1

4
 

𝑟≥1

(1 + 𝑖𝐻𝑟) 𝑓𝑖
𝑟  ∈ 𝐿2 

Where𝐻𝑟 is the Hilbert transform . Notice that  𝑟≥1 𝑅𝑒 𝑖
𝑟  𝑓𝑖

𝑟  4  and  𝑟≥1  𝑖
𝑟 2 ≤

 𝑟≥1  3 8   𝑓𝑖
𝑟 2 = 3. 2−𝑖−3 . Also ,supp𝑖

𝑟 ⊂ (−∞, 0) . Let 𝑟≥1 𝐹−1
𝑟 = 0  and for𝑚 ≥ 0, let  

 

𝑟≥1

𝐹𝑚
𝑟 =   𝐹𝑚−1

𝑟  𝑥 . exp −𝑚
𝑟  𝑥  +

𝑓𝑚
𝑟

5
 

𝑟≥1

 

This is a continuous function in 𝐿2(𝑅) . It is supported on the union of the supports of the𝑓𝑖
𝑟for 

0 ≤ 𝑖 ≤ 𝑚, so condition (1) holds . Becauseexp −𝑥 + 𝑥 5 ≤ 1 whenever 0 ≤ 𝑥 ≤ 1 and since 

 𝑟≥1  𝑓𝑚
𝑟 ∞ ≤  𝑟≥1  𝑓 𝑚

𝑟 
1
 , induction proves condition (2)  

  𝐹𝑚
𝑟 (𝑥) ≤   

𝑟≥1

exp − 𝑓𝑚
𝑟  𝑥   +  

𝑟≥1

 𝑓𝑚
𝑟  𝑥  

5
 ≤ 1

𝑟≥1

 

Claim . For 𝑖 ≤ 𝑚 < ∞ and for all 𝑥 ∈ 𝑆𝑖
𝑟  

 

𝑟≥1

 𝐹 𝑚
𝑟  𝑥 − 𝑓𝑖 

𝑟
  (𝑥) 5  ≤

1

10
 

𝑟≥1

 𝑓𝑖 
𝑟
 𝑥                                                  (2.5) 

This inequality is proved inM. 𝑃. 𝑆 .in a slightly different context . 

Now for 𝑥 ∈ 𝑆𝑖
𝑟  , we have  𝜎1

𝑟 𝑥 > 4𝑖 3 𝑟≥1  . So (2.5) shows that  

 𝑅𝑒  

𝑟≥1

𝐹 𝑚
𝑟 𝑢𝑟 𝑥 −  

𝑟≥1

𝑓 𝑖
𝑟
𝑢𝑟 𝑥 5  ≤  𝑓𝑖 

𝑟
𝑢𝑟 𝑥 10 

𝑟≥1

 

and so 

 

𝑟≥1

𝑅𝜀𝐹 𝑚
𝑟𝑢𝑟 𝑥 ≥  

𝑟≥1

𝑓 𝑖
𝑟
 𝑥 10 ≥  

𝑟≥1

 𝑢𝑟 𝑥  

30(1 + 𝜎1
𝑟 𝑥 )

  

This holds for all 𝑥 ∈∪𝑖=0
𝑚 𝑆𝑖

𝑟  which is𝐸𝑟 ∩ (−∞, 𝑁 𝑚 ] . This proves condition  (3) on  𝐹𝑚
𝑟   and 

complete the proof  

(3) .Wegeneralize the previous ones to dimensions between 0 and 1. It requires that the measure is 

supported on a coherent set(see[11]).  

Theorem 3: Suppose  0 < 𝜀 < 1 , 𝑓𝑟 ∈ 𝐿1(𝑑𝜇1−𝜀) is supported on 𝐸𝑟 , and 𝐸𝑟  is 

(1 − 𝜀)-coherent. Then there is a constant 𝐶𝑟  independent of𝑓𝑟such that 

  

𝑟≥1

 𝑓𝑟  𝑑𝜇1−𝜀(𝑥)

𝜎1−𝜀
𝑟 (𝐸𝑟 , 𝑥)

≤  lim
𝐿→∞

inf 𝐿𝜀  𝐶𝑟

𝑟≥1

  𝑓𝑟𝑑𝜇1−𝜀   

𝐿

−𝐿

𝑑𝑥                           (3.1) 

Proof :The idea of the proof is to construct an auxiliary function 𝐹𝑚
𝑟  as in Theorem 2. This seems 

impossible to do on the given fractalset 𝐸𝑟 .So instead, the given measure is approximated using 

convolutionwith a Schwartz function 𝜑𝐿
𝑟 . Then a sequence 𝐹 𝑚

𝑟 is constructed for the newsmoothed-out 

measure,  𝑟≥1 𝜙𝐿
𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀  , on a dense dilation of the integers. Afterthis modified 𝑀. 𝑃. 𝑆. 
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construction, we take the 𝑙𝑖𝑚 𝑖𝑛𝑓 as  𝐿 → ∞. Most ofthe work occurs at this stage, in Lemmas 4 and 

5. 

  Let 𝜙𝑟be an even Schwartz function such that 

  

𝑟≥1

𝜙𝑟  𝑑𝑥 = 1 

and 

supp  

𝑟≥1

𝜑 𝑟 ⊆ [−1,1] 

We can not arrange that 𝜙𝑟  have compact support, but the following lemma is a substitute [11]. 

Lemma 1: There are constants𝐶𝑟  and𝐾0  such that for all 𝑥 and for all 𝜀 > 1 

   𝜙𝑟(𝑛 + 𝑥) 

𝑟≥1 𝑛+𝑥 >𝜀−1

<  

𝑟≥1

𝐶𝑟 𝜀 − 1  

Proof : Since the sum is over a set of integers , we may assume 0 < 𝑥 < 1 . Also the condition 

 1 + 𝑥 > 𝜀 − 1 . Since 𝜙𝑟  is a Schwartz function 𝜙𝑟 𝑥 = 𝑂(𝑥2) . So there is  𝐶𝑟   and 𝜀 − 1such 

that 

  

𝑟≥1

 𝜙𝑟(𝑥) 

∞

𝜀−1

𝑑𝑥 <  

𝑟≥1

𝐶𝑟 𝜀 − 1      𝑓𝑜𝑟  𝜀 > 0  

We may assume the same inequality holds for the Schwartz function 𝜙𝑟  .  

Then for any 𝑥 ∈  0,1 . 

  

𝑟≥1

 𝜙𝑟 𝑡 − 𝜙𝑟(𝑛 + 𝑥) 

𝑛+1

1

𝑑𝑡 ≤ 𝑠𝑢𝑝𝑛<𝑡<𝑛+1  

𝑟≥1

 𝜙𝑟 𝑡 − 𝜙𝑟 𝑛 + 𝑥  

≤   

𝑟≥1

 𝜙𝑟 𝑡 𝑛  

𝑛+1

𝑛

𝑑𝑡 . 

So , by the triangle inequality  

  

𝑟≥1

 𝜙𝑟(𝑛 + 𝑥) 

𝑛+𝑥>𝜀−1

≤    

𝑟≥1

  𝜙𝑟(𝑡) +  𝜙 𝑟   

𝑛+1

𝑛𝑛>𝜀−1

𝑑𝑡 ≤ 2  𝐶𝑟 𝜀 − 1 

𝑟≥1

 

 

𝐸𝑟 ∪  𝐶𝜀
𝑟  

Which proves the lemma . 

Since 𝐸𝑟  is coherent, it is bounded below. Let 𝑚 = 𝑖𝑛𝑓  𝑟≥1 𝐸𝑟  . Fix𝐸𝑟 > 0 . It is easy to construct 

a cantor set with 𝜇1−𝜀measure 1 . Such a set is coherent by Theorem 4 . So by dilation and translation 

, there is an  1 − 𝜀 - coherent set  𝑟≥1 𝐶𝜀
𝑟 ⊂ [𝑚 − 2, 𝑚 − 1] such that  𝜇1−𝜀 𝐶𝜀

𝑟 = ε𝑟≥1 . Notice 

that the constant (1.4) is not affected by dilation of the set . Let  𝐸𝑟
1 = 𝐸𝑟 ∪  𝐶𝜀

𝑟   . This is also coherent 

, with a (1.4) constant independent of 𝜀 . It will replace 𝐸𝑟   until the very last step of the proof of 

Theorem 3 , in which 𝜀 → 0 . We will use the new notation  

 

𝑟≥1

𝐸𝑟𝑥 =  

𝑟≥1

𝐸𝑟
1 ∩  −∞, 𝑥  𝑎𝑛𝑑  

𝑟≥1

𝜎1−𝜀
𝑟  =  

𝑟≥1

𝜇1−𝜀  (𝐸𝑟𝑥 )      

Suppose a real number 𝑀 has been chosen such that𝜀 ≤  𝑟≥1 𝜎1−𝜀
𝑟 (𝑀) < ∞ . The next lemma 

provides a kind of uniformity in the limit in (4.1) that will be useful later [11]. 

Lemma 2 : There is a 𝛿0 > 0 such that for all 𝑥 ≤ 𝑀 and all 0 < 𝛿 < 𝛿0 ,  

 

𝑟≥1

  𝐸𝑟 𝑥 + 𝐼𝛿  𝛿𝜀 <  𝐶𝐸𝑟

𝑟  (

𝑟≥1

𝜎1−𝜀
𝑟  𝑥 + 𝜀) 

And 

 

𝑟≥1

  𝐸𝑟 𝑥 + 𝐼𝛿  𝛿𝜀 >  1 2  (

𝑟≥1

𝜎1−𝜀
𝑟  𝑥 − 𝜀 2 ) 
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Where 𝐶𝐸𝑟

𝑟  is the same constant as in the definition of coherent , it depends only on 𝐸𝑟  and 1 − 𝜀 . 

Proof : Since 𝜇1−𝜀(𝐸 𝑟 ∩ (−∞, 𝑀)𝑟≥1 < ∞ , there is a finite increasing sequence of points{𝑥𝑖}  in 
 𝐸𝑟 𝑀  such that  

 𝜇1−𝜀(𝐸𝑟
1 ∩  𝑥𝑖 , 𝑥𝑖+1 )𝑟≥1 < 𝜀 4 for all 𝑖, including the case 𝑖 =  0 for which we adopt the 

convention 𝑥0 = ∞ .We set the last term 𝑥𝑁 = 𝑀. 

For each 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑁  there is by the definition of coherent (1.4), a 𝛿𝑖 < 𝜀such that whenever𝛿 < 𝛿𝑖  

. Let  𝑟≥1 𝑄(𝛿,  𝐸𝑟 𝑥) be the minimal number of intervals of lengh exactly 𝛿 required to cover 
 𝐸𝑟 𝑥 . Then from the definition of Hausdorff measure  

 𝜇1−𝜀 𝐸𝑟 𝑥𝑖
≤

𝑟≥1

 

𝑟≥1

lim
𝛿→0

𝛿1−𝜀 𝑄(𝛿,  𝐸𝑟 𝑥) ≤ 2  lim
𝛿→0

𝛿1−𝜀   𝐸𝑟 𝑥 + 𝐼𝛿  

𝑟≥1

 

So ,𝛿𝑖   can be chosen small enough that𝛿 < 𝛿𝑖   implies . 

 𝜇1−𝜀 𝐸𝑟 𝑥𝑖
≤

𝑟≥1

2  

𝑟≥1

𝛿1−𝜀   𝐸𝑟 𝑥 + 𝐼𝛿  + 𝜀 4  

Let 𝛿0 < 𝜀 be the smallest of the 𝛿𝑖  . Suppose 𝛿 < 𝛿𝑖  , and 𝑥 ≤ 𝑀 . Then for some 𝑖 ≥ 0 , we have 

𝑥𝑖 < 𝑥 ≤ 𝑥𝑖+1 . So  

 

𝑟≥1

  𝐸𝑟 𝑥  + 𝐼𝛿  𝛿𝜀 ≤  

𝑟≥1

  𝐸𝑟 𝑥𝑖+1
+ 𝐼𝛿  𝛿𝜀 ≤  

𝑟≥1

𝐶𝐸
𝑟[ 𝜎1−𝜀

𝑟  𝑥𝑖+1 + 𝜀 4 

≤  

𝑟≥1

(𝐶𝐸𝑟

𝑟 𝜎1−𝜀
𝑟  𝑥 + 𝜀 4 ) +  𝐶𝐸𝑟

𝑟 𝜇1−𝜀(𝐸𝑟
1 ∩ [𝑥,

𝑟≥1

𝑥𝑖+1]) ≤  𝐶𝐸𝑟

𝑟 [𝜎1−𝜀
𝑟  𝑥 + 𝜀] 

𝑟≥1

 

Like wise  

   𝐸𝑟 𝑥 − 𝐼𝛿  

𝑟≥1

𝛿𝜀 ≥    𝐸𝑟 𝑥𝑖
 − 𝐼𝛿  

𝑟≥1

𝛿𝜀 > 1 2   [

𝑟≥1

𝜎1−𝜀
𝑟  𝑥𝑖 − 𝜀 4]    

≥ 1 2   [

𝑟≥1

𝜎1−𝜀
𝑟  𝑥 − 𝜀 2]  

Which proves the lemma . 

Now fix   such that 0 < 𝛿 < 𝛿0 . Fix 𝐾 > 𝐾0 as defined by Lemmas1 . We also assume 

 𝑟≥1 𝐾𝐶4
𝑟 >  𝑟≥1 2𝐶5

𝑟  , where 𝐶4
𝑟  and𝐶5

𝑟   are absolute constants that arise in Lemma 4and 5, 

respectively . Let 𝐿 = 𝐾 𝛿  and let 𝜑𝐿
𝑟 𝑥 = 𝜑𝑟(𝐿𝑥) . Let  

 𝑆𝑟

𝑟≥1

=  

𝑟≥1

[(𝐸𝑟 + 𝐼𝛿 ) ∩ 𝑍 𝐿] ∩ (−∞, 𝑀]   

Lemma 3(see[11]) :There is a sequence𝐹 𝑚
𝑟 : 𝑍 𝐿 → ℂ   such that 

𝑅𝑒 

𝑟≥1

 𝐹 𝑚
𝑟 (𝑛 𝐿) 𝜑𝐿

𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿 )  

≥  

𝑟≥1

𝐶𝑟𝐾𝜀
𝜑𝐿

𝑟 ∗ 𝑑𝜇1−𝜀 𝑛 𝐿  

𝐿1−𝜀 𝜀 + 𝜎1−𝜀
𝑟  𝑛 𝐿   

                                         (3.2) 

for all 𝑛 𝐿 ∈ 𝑆𝑟  

 𝐹 𝑚
𝑟 (𝑛 𝐿)  ≤ 

𝑟≥1

 

𝑟≥1

𝐶𝑟𝐾𝜀

𝐿1−𝜀 𝜎1−𝜀
𝑟  𝑛 𝐿   + 𝜀

,

for  all  𝑛 𝐿 > 𝑚 − 1 2                                           (3.3) 

 𝐹 𝑚
𝑟 (𝑛 𝐿)  ≤   

𝑟≥1

𝐶𝜀
𝑟

𝑟≥1

,   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛                                                           (3.4) 

 

𝑟≥1

 𝐹𝑚
𝑟  ∞ ≤ 1                                                                                             (3.5) 

Proof : Let  𝑟≥1 𝑆𝑟 =  𝑛1 𝐿 , 𝑛2 𝐿 , … , 𝑛1−𝜀 𝐿   . Choose 𝑖0such that 

4−𝑖0 < 𝜀 ≤ 4−𝑖0+1                                                                             (3.6) 

We can ensure that 𝑆𝑟  has at least 4𝑖0  terms by choosing 𝛿0small enough ( to see this consider Lemma 

2 and inequality (3.10) below ) In fact , we can assume that the first 4𝑖0  terms come from 𝐶𝜀
𝑟  , and are 

all less than𝑚  . Let 𝑆0
𝑟  be the set of the first 4𝑖0  terms of 𝑆𝑟 . Let 𝑆1

𝑟  be the set of the next 4𝑖0+1 terms 
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etc , until 𝑆𝑟  is exhausted . If there are terms left over when this construction stops , they are included 

in the last set ,𝑆𝑡
𝑟 .So,𝑆𝑟 =∪𝑖=0

𝑡 𝑆𝑖
𝑟   where each  𝑟≥1 𝑆𝑖

𝑟 ,𝑖 < 𝑡 , has 4𝑖0+𝑗  elements . Then , construct 

functions 𝑓𝑖
𝑟  and 𝐹𝑚

𝑟  as in 𝑀. 𝑃. 𝑆.( using the function  𝑟≥1 𝜑𝐿
𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀  instead of the function 

referred to there as𝜑 𝑟   ) , so that the following inequality holds 

 

 

𝑟≥1

 𝐹 𝑚
𝑟  𝑛 𝐿  −  

𝑟≥1

𝑓 1
𝑟(𝑛 𝐿 )

5
 ≤ (1 10)4−(𝑗0+𝑗 )    𝑓𝑜𝑟   𝑛 𝐿 𝑆𝑖

𝑟                                (3.7)  

The calculations in𝑀. 𝑃. 𝑆. actually prove something a little more general. If𝑛 < 𝑛1−𝜀  and 𝑛 𝐿 ∉ 𝑆𝑟  

define 𝑖 = 𝑖(𝑛) by 

𝑛𝑖 𝐿 =  

𝑟≥1

min{𝑛1−𝜀 𝐿 ∈ 𝑆𝑟 : 𝑛1−𝜀 > 𝑛} 

Define𝑖 = 𝑖(𝑛) by the condition 𝑛𝑖 𝐿 ∈ 𝑆𝑖
𝑟  . Then inequality (3.7) also holds for this 𝑛and 𝑖. However 

in this case 𝑓 𝑖
𝑟 𝑛 𝐿  = 0, so 

 

𝑟≥1

𝐹 𝑚
𝑟  𝑛 𝐿  ≤  1 10  4− 𝑖0+𝑖         𝑓𝑜𝑟 𝑛 𝐿 ∈ 𝑆𝑟 , 𝑛 < 𝑛1−𝜀 , 𝑖 > 𝑖 𝑛                      (3.8) 

from the construction of 𝑆𝑟  above , if𝑛1−𝜀 𝐿 ∈ 𝑛 𝑆𝑖
𝑟  with 𝑖 > 0 then 

 

𝑟≥1

𝑐1
𝑟4− 𝑖0+𝑖  ≤

1

𝜀 − 1
≤  

𝑟≥1

𝑐2
𝑟4− 𝑖0+𝑖                            (3.9) 

and since  𝐸𝑛 1−𝜀 𝐿 
𝑟

𝑟≥1 + 𝐼𝛿 , is made up of intervals of length at least 𝛿 > 1 𝐿  

 

𝑟≥1

𝑐3
𝑟

(1 − 𝜀)

𝐿
≤   𝐸𝑛 1−𝜀 𝐿 

𝑟

𝑟≥1

+ 𝐼𝛿 ≤  

𝑟≥1

𝑐4
𝑟

(1 − 𝜀)

𝐿
                  (3.10) 

where the 𝑐𝑖
𝑟  in (3.9) and (3.10) are absolute constants from 𝑀. 𝑃. 𝑆. 

  𝑓 𝑖
𝑟(𝑛 𝐿 ) 

𝑟≥1

= 4− 𝑖0+𝑖    𝑓𝑜𝑟  𝑛 𝐿  ∈ 𝑆𝑖
𝑟                                        (3.11) 

For𝑛 𝐿 > 𝑚 − 1 2  ,  𝑟≥1 𝜎1−𝜀
𝑟 (𝑛 𝐿 ) ≥ 𝜀 , so that the −𝜀 2  in Lemma 2 may be replaced by 

 1 + 𝜀  . Also , 𝑖 > 0 for these𝑛 so (3.9) applies . From these, and (3.10) , we get (3.3) for 𝑛 𝐿 ∈ 𝑆𝑟  , 

 

𝑟≥1

𝐹 𝑚
𝑟  𝑛 𝐿  ≤ 4− 𝑖0+𝑖 ≤

1

𝜀 − 1
≤  

𝑟≥1

1

𝐿  𝐸𝑟 𝑛/𝐿 + 𝐼𝛿  

≤  

𝑟≥1

1

 𝜀 − 1 𝐿1−𝜀 𝜎1−𝜀
𝑟  𝑛 𝐿   + 𝜀

                     (3.12) 

where we have omitted absolute constants. 

This inequality also applies off 𝑆𝑟  as follows (see [11]), (3.3) is trivial for𝑛 > 𝑛1−𝜀   because 𝐹 𝑚
𝑟  is 

zero there . For 𝑛 𝐿 ∉ 𝑆𝑟and < 𝑛1−𝜀  , the first two inequalities of (3.12) holds with𝑖 = 𝑖(𝑛) and 
 𝜀 − 1 = 𝑖(𝑛) . The third then holds with the subscript𝑛𝜀−1 𝐿  . This change is harmless because  

 

𝑟≥1

  𝐸𝑟 𝑛1−𝜀
+ 𝐼𝛿  −    𝐸𝑟 𝑛/𝐿 + 𝐼𝛿  

𝑟≥1

≤ 𝛿 

So the error in the denominator is at most 𝐿𝛿 = 𝐾 which is much smaller than 𝐿𝛿
1−𝜀  , we can assume 𝐿 

is quite large through proper choice of 𝛿0.So the error is negligible and we have (3.3) for all 

𝑛 𝐿 > 𝑚 − 1 2  . 

Inequality (3.4) follows from (3.11) and (3.7) on 𝑆𝑟  , and from (3.8) off 𝑆𝑟  . Part of 

the𝑀. 𝑃. 𝑆.construction is that  𝑟≥1 𝑓 𝑟(𝜑𝐿
𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀) ≥ 0 . This together with (3.11) (3.7) and 

(3.9) imply that . 

𝑅𝑒   𝐹 𝑚
𝑟 (𝑛 𝐿) 

𝑟≥1

𝜑𝐿
𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿)  ≥  

𝑟≥1

 𝜑𝐿
𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿)  

𝑐5
𝑟𝐾

    for 𝑛 𝐿) ∈ 𝑆𝑟     (3.13) 

except that for (𝑛 𝐿) ∈ 𝑆0
𝑟   we must replace 𝑐5

𝑟𝐾 by 4𝑖0  . With (3.10) and Lemma 2 , this shows that 

the left side of (3.2) is at least  
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𝑟≥1

 𝜑𝐿
𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿)  

𝐿  𝐸𝑟 𝑛/𝐿 + 𝐼𝛿  
≥  

𝑟≥1

 𝜑𝐿
𝑟  ∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿)  

𝐾𝜀𝐿1−𝜀 𝜎1−𝜀
𝑟  𝑛 𝐿   + 𝜀

 

for𝑛 𝐿 ∈   𝑟≥1 ( 𝑆𝑟 − 𝑆𝑖0

𝑟 )  . For𝑛 𝐿 ∈ 𝑆𝑖0

𝑟   , use (3.6) instead . In this case we need the inequality 

> 1 𝐾𝜀𝐿1−𝜀𝜀  , which holds for large enough 𝐿 . This proves (3.2) for all 𝑛 𝐿 ∈ 𝑆𝑟 . 

Inequality (3.5) is part of the 𝑀. 𝑃. 𝑆.construction. This proves Lemma 3. 

𝐹 𝑚
𝑟 must be slightly modified off 𝑆𝑟  before proceeding with the proof of the theorem . For𝑛 𝐿 > 𝑀   

with𝑛 𝐿 ∉ 𝑆𝑟   , let 

 

𝑟≥1

𝐺𝑟(𝑛 𝐿) 𝜑𝐿
𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿) =

 𝜑𝐿
𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿)  

𝐿1−𝜀 𝜀 + 𝜎1−𝜀
𝑟  𝑛 𝐿   

                                             (3.14) 

Let 

𝐴(𝐿) =  

𝑟≥1

 𝐺𝑟(𝑛 𝐿) 𝜑𝐿
𝑟  ∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿) 

𝑛∈𝑍

 

(𝐴 + 𝜀)(𝐿) =  

𝑟≥1

  𝐹 𝑚
𝑟  − 𝐺𝑟 (𝑛 𝐿) 𝜑𝐿

𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿) 

𝑛∈𝑍

 

Since𝐺𝑟   may be viewed as a substitute for𝐹 𝑚
𝑟   , the term(𝐴 + 𝜀)(𝐿)may be viewed as an error term 

𝐿1−𝜀 𝐴  is supposed to approximate the left – hand side of (3.1) or large enough𝐿 . This will be the 

content of lemma 4 . The next calculation shows the relation to the right – hand of (3.1) (see [11]). 

𝐿1−𝜀  𝐴 − 𝐿1−𝜀 𝐴 + 𝜀 

≤ 𝐿1−𝜀  

𝑟≥1

 𝐹 𝑚
𝑟  (𝑛 𝐿) 𝜑𝐿

𝑟

𝑛∈𝑍

∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿) = 𝐿1−𝜀  

𝑟≥1

 𝐹 𝑚
𝑟 (𝜑𝐿

𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿) )  𝑜  

≤ 𝐿1−𝜀  

𝑟≥1

  𝜑 𝑟(𝑥 𝐿)𝑓𝑟𝑑𝜇1−𝜀
 (𝑥)  ≤ 𝐿1−𝜀  

𝑟≥1

 𝜑 𝑟 ∞   𝑓𝑟𝑑𝜇1−𝜀
  𝑥  

𝐿

−𝐿

𝑑𝑥 . 

Lemma 4:[11] There is an absolute constant 𝐶𝑟  such that 

lim
𝐿→∞

𝐿1−𝜀  𝐴 ≥  

𝑟≥1

𝐶4
𝑟  

 𝑓𝑟  𝑑𝜇1−𝜀

𝜀 + 𝜎1−𝜀
𝑟 (𝑥)

𝑀

−∞

 

Lemma 5 :[11] There is an absolute constant 𝐶5
𝑟  such that 

lim
𝐿→∞

𝑠𝑢𝑝𝐿1−𝜀  𝐴 + 𝜀 ≤  
𝐶5

𝑟

𝐾
𝑟≥1

 
 𝑓𝑟  𝑑𝜇1−𝜀

𝜀 + 𝜎1−𝜀
𝑟 (𝑥)

𝑀

−∞

 

 

Since 𝐾 was chosen so that  
𝐶5

𝑟

𝐾𝑟≥1 <  
𝐶4

𝑟

2𝑟≥1  , we can combine the lemmas to get  

 

𝑟≥1

 𝐶4
𝑟 −

𝐶4
𝑟

2
  

 𝑓𝑟  𝑑𝜇1−𝜀

𝜀 + 𝜎1−𝜀
𝑟  𝑥 

𝑀

−∞

≤ lim
𝐿→∞

inf(𝐿1−𝜀 𝐴 − 𝐿1−𝜀  𝐴 + 𝜀 ) 

≤  

𝑟≥1

 𝜑 𝑟 ∞ lim
𝐿→∞

inf𝐿𝜀   𝑓𝑟𝑑𝜇1−𝜀
  

𝐿

−𝐿

𝑑𝑥. 

Notice that  𝑟≥1 𝜎1−𝜀
𝑟  𝑥 =  𝑟≥1 𝜎1−𝜀

𝑟  𝐸𝑟 , 𝑥 + 𝜀 for all 𝑥 in the support of 𝑓𝑟  . Then let𝜀 → 0  

and let𝑀 → sup{𝑥: 𝜎1−𝜀
𝑟  𝑥 < ∞}  to get (3.1) . 

Proof of lemma 4:let 𝜀1 be arbitrary 0 < 𝜀1<ε . Let 

𝐼𝑖 = {𝑥 ≤ 𝑀: 𝑖𝜀1 ≤ 𝜎1−𝜀
𝑟 <  𝑖 + 1 𝜀1}                                                       (3.15) 

for𝑖 = 0,1, … , 𝐽where 𝑀 ∈ 𝐼𝑖 . Notice that  𝜇1−𝜀(𝐸𝑟
 ∩𝑟≥1 𝐼𝑖) = 𝜀1 for each 0 ≤ 𝑖 < 𝐽. Then by (3.2) 

and (3.4), 
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𝐿1−𝜀  𝐴 = 𝐿1−𝜀   

𝑟≥1

 𝐺𝑟(𝑛 𝐿) 𝜑𝐿
𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿) 

𝑛∈𝑍

 ≥  𝐺𝑟  
 𝜑𝐿

𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿)  

𝜀 + 𝜎1−𝜀
𝑟  𝑛 𝐿  

𝑛<𝐿𝑀𝑟≥1

≥  𝐺𝑟   
 𝜑𝐿

𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿)  

𝜀 + (𝐽 + 1)𝜀1
𝑛 𝐿 ∈𝐼𝑖

𝐽

𝐽=0𝑟≥1

=  

𝑟≥1

𝐺𝑟   
𝐴𝑖

𝜀 + (𝐽 + 1)𝜀1

𝐽

𝐽=0

 

the last equation being a definition of 𝐴𝑖  . We now claim that , for all 𝐽 ,  

lim
𝐿→∞

inf 𝐴𝑖 ≥ 

𝑟≥1

  𝑓𝑟𝑑𝜇1−𝜀

𝐼𝑖

                                                                              (3.16) 

       

To proof (3.16) notice that for all 𝐽. 𝐿 , 

𝐴𝑖 ≥  

𝑟≥1

  𝜑𝐿
𝑟  ∗ 𝑓𝑟𝑑𝜇1−𝜀(𝑛 𝐿) 

𝑛 𝐿 ∈𝐼𝑖

 

≥ − 

𝑟≥1

  𝜑𝐿
𝑟 ∗ 𝜒𝐼𝑖𝑓

𝑟𝑑𝜇1−𝜀(𝑛 𝐿) 

𝑛 𝐿 ∈𝐼𝑖

 +   

𝑟≥1

 𝜑𝐿
𝑟 ∗ 𝜒𝐼𝑖𝑓

𝑟𝑑𝜇1−𝜀(𝑛 𝐿) 

𝑛∈𝑍

    

−   

𝑟≥1

 𝜑𝐿
𝑟 ∗ 𝜒𝐼𝑖𝑓

𝑟𝑑𝜇1−𝜀(𝑛 𝐿) 

𝑛 𝐿 ∉𝐼𝑖

 = −𝐴𝑖
𝑎 + 𝐴𝑖

𝑎+𝜀 − 𝐴𝑖
𝑎+2𝜀  

Now since 𝜑 𝑟 ⊆ [−1.1] . The Poisson summation formula shows that for all 𝑥 

  

𝑟≥1

𝜑𝑟 𝑛 − 𝑥 =  

𝑟≥1

𝜑𝑟
 

𝑧

 0 = 1 

So 

 

𝐴𝑖
𝑎+𝜀 =    𝜑𝑟 𝑛 𝐿 − 𝑥 

𝑟≥1

𝑓𝑟(𝑥)𝑑𝜇1−𝜀

𝑧

 =  

𝑟≥1

  𝑓𝑟𝑑𝜇1−𝜀  

𝐼𝑖

 

So , we must show that 𝐴𝑖
𝑎  and 𝐴𝑖

𝑎+2𝜀  approach zero as 𝐿 → ∞ . We will assume  

𝐼𝑖 = (−∞, 0) , other case being similar . 

Since 𝜑𝑟  is a Schwartz function , there is a constant 𝑅 such that for all real𝑥 

  

𝑟≥1

 𝜑𝑟(𝑛 − 𝑥) < 𝑅

𝑛∈𝑍

 

Let 𝜀2 > 0 . Since 𝑓𝑟 ∈ 𝐿1(𝑑𝜇1−𝜀)and 𝜀 < 1, there is a 𝛿 > 0  such that 

  

𝑟≥1

𝑓𝑟𝑑𝜇1−𝜀 < 𝜀2 𝑅                                                                     (3.17) 

𝐼𝛿 (0)

 

of course , if𝐼𝑖  has a boundary point at some 𝑥0 ≠ 0 , then𝐼𝛿(0) must be replaced by 𝐼𝛿(𝑥0). Since𝜑𝑟   

is a Schwartz function , there is a constant 𝐶𝑟such that  

 

𝑟≥1

𝜑𝑟(𝐿(𝑥 − 𝑛 𝐿) ≤  

𝑟≥1

𝐶𝑟

 𝐿(𝑥 − 𝑛) 𝐿  2 + 1
  

Since 𝑓𝑟 ∈ 𝐿1(𝑑𝜇1−𝜀)        

 

𝑟≥1

  𝜑𝐿
𝑟 ∗ (𝜒 𝛿 ,∞ 𝑓

𝑟𝑑𝜇1−𝜀)(𝑛 𝐿)  

𝑛≤0

≤  

𝑟≥1

 
𝐶𝑟

 𝐿 𝛿 − 𝑛 𝐿  
2

+ 1𝑛≤0

≤  

𝑟≥1

𝐶𝑟(𝐿𝛿 )−1 

which approaches zero as 𝐿 approaches infinity . Also  
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𝑟≥1

  𝜑𝐿
𝑟 ∗ (𝜒 0,𝛿  𝑓

𝑟  𝑑𝜇1−𝜀)(𝑛 𝐿)  

𝑛≤0

≤    

𝑟≥1

     𝜑𝐿
𝑟(𝑛 𝐿 − 𝑥)  

𝑛≤0

 

𝛿 

0

𝑓𝑟𝑑𝜇1−𝜀(𝑥) 

≤ 𝑅(𝜀2 𝑅) = 𝜀2  
Which shows that 

lim sup 𝐴𝑖
𝑎 ≤ lim 

𝑟≥1

  𝜑𝐿
𝑟 ∗ (𝜒[0,∞)𝑓

𝑟  𝑑𝜇1−𝜀(𝑛 𝐿)  

𝑛≤0

≤ 0 + 𝜀2 

as → ∞ . Since𝜀2 > 0 was arbitrary , this proves that𝑙𝑖𝑚𝐴𝑖
𝑎 = 0 . This proof work because 𝑛 ∈

(−∞, 0) and 𝑥 ∈ (0, ∞) range over disjoint intervals . Soit works for arbitrary intervals 𝐼𝑖  and for 

𝐴𝑖
𝑎+2𝜀  as well . The claim is proved , but it is not exactly what we need the absolute value should be 

inside the integral . We now show that the error is small. Define 

𝑒𝑖 =  

𝑟≥1

  𝑓𝑟  𝑑𝜇1−𝜀

𝐼𝑖

 ≥ 0 

We will show that  𝑒𝑖 → 0 as 𝜀1 → 0 . This will complete the proof of Lemma 4. 

lim inf 𝐿1−𝜀  𝐴 ≥ lim inf  

𝑟≥1

𝐶𝑟  
𝐴𝑖

𝜀 + (𝐽 + 𝐼)
≥  

𝐴𝑖

𝜀 + 𝐽𝜀1

≥  

lim  inf 𝑟≥1

𝐶𝑟  
𝐴𝑖

𝜀 + 𝐽𝜀1
≥  

𝑟≥1

𝐶𝑟
∫ 𝑓𝑟  𝑑𝜇1−𝜀𝐼𝑖

− 𝑒𝑖

𝜀 + 𝐽𝜀1

≥  

𝑟≥1

𝐶𝑟
∫  𝑓𝑟   𝑑𝜇1−𝜀

𝑀

−∞

𝜀 + 𝜎1−𝜀
𝑟  𝑥 

−  
𝑒𝑖

𝜀
                                      (3.18) 

Let 𝜇 =  𝑟≥1 𝜒𝐸𝑟𝑀
𝜇1−𝜀

 and for each interval 𝐼 ⊂ 𝑅 define 

 

𝑟≥1

𝑎𝜈𝑔1 𝑓𝑟 =
𝐼

𝜇(𝐼)
  

𝑟≥1

𝑓𝑟  𝑑𝜇

𝐼

 

and 

𝑈  

𝑟≥1

𝑓𝑟 𝑥 =  𝜀1 −1 sup   

𝑟≥1

 𝑓𝑟 − 𝑎𝜈𝑔1 𝑓𝑟   𝑑𝜇                                             (3.19)

𝐼

 

     

Taken over all intervals 𝐼 containing 𝑥 such that𝜇(𝐼) = 𝜀1 . It is easy to check that 𝑈 is a sublinear 

operator on 𝐿1(𝑑𝜇) and that for 𝑥 ∈ 𝐼𝑖𝑈𝑓𝑟(𝑥) ≥ 𝑒𝑖 𝜇(𝐼𝑖)  . So 

 𝑒𝑖 =  
1

𝜇(𝐼𝑖)
 𝑒𝑖  𝑑μ 

𝐼𝑖

≤   

𝑟≥1

𝑈

𝑅

𝑓𝑟 𝑥 𝑑μ                    (3.20) 

If 𝑓𝑟  is continuous with compact support , then the right – hand side of (3.20) goes to zero with𝜀1  . 

For in that case 𝑓𝑟  is uniformly continuous  and 𝑟≥1  𝑓𝑟 𝑥 − 𝑎𝜈𝑔1(𝑥) → 0 uniformly in𝑥  and𝐼 

as  𝐼 = 𝜀1 → 0. Therefore .𝑈𝑓𝑟 → 0uniformly on its support , which is bounded . Since 𝜇   is finite 

on any bounded set ,∫ 𝑟≥1 𝑈𝑓𝑟 → 0 in this case . 

Now we show that 𝑈 is bounded  on𝐿1(𝑑𝜇)independent of 𝜀1. Given any 𝑥 ∈ 𝐸𝑟  , there is a𝐽 = 𝐽(𝑥) 

such that 𝑥 ∈ 𝐼𝑖 . Let𝐼𝑖
∗ = 𝐼𝑖−1 ∪ 𝐼𝑖 ∪ 𝐼𝑖+1( where𝐼𝑖−1 is the emptyset)  Appling the triangle inequality 

to (3.19) , 𝑈𝑓𝑟  splits naturally into two parts , each of which is at most  𝑟≥1 𝑉𝑓𝑟 𝑥 =

(𝜀1)−1 ∫  𝑟≥1  𝑓𝑟  𝑑𝜇
𝐼𝑖(𝑥)

∗  . But 𝑉𝑓𝑟(𝑥) is constant on each 𝐼𝑖so , 
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(1 2)   𝑈

𝑅

𝑓𝑟 𝑥 𝑑𝜇 ≤    𝑉

𝑅

𝑓𝑟 𝑥 𝑑𝜇

𝑟≥1𝑟≥1

=   

𝑟≥1

  𝑉

𝐼𝑖

𝑓𝑟 𝑥 𝑑𝜇 ≤      𝑓𝑟  

𝐼𝑖
∗𝑟≥1

𝑑𝜇

= 3     𝑓𝑟  

𝐼𝑖𝑟≥1

𝑑𝜇 = 3    𝑓𝑟  

𝑅

𝑑𝜇     

𝑟≥1

 

which shows 𝑈 is bounded on 𝐿1 . 

For any 𝑓𝑟 ∈ 𝐿1(𝑑𝜇) , there is a continuous function 𝑔𝑟  with compact support that is arbitrarily close 

to 𝑓𝑟  in the 𝐿1(𝑑𝜇). So , 

 

𝑟≥1

 𝑈 𝑓𝑟 𝑥 𝑑𝜇 ≤  

𝑟≥1

 𝑈 𝑔𝑟 𝑥 + 𝑈( 𝑓𝑟 − 𝑔𝑟) 𝑥 𝑑𝜇 

≤   

𝑟≥1

𝑈 𝑔𝑟 𝑥 𝑑𝜇 + 2  

𝑟≥1

   𝑓𝑟 − 𝑔𝑟   𝑥 𝑑𝜇                      (3.21) 

The first term of the last expression goes to zero with  𝜀1  because 𝑔𝑟  is continuous . The second term 

can be made arbitrarily small by proper choice of 𝑔𝑟  . With (3.20) , this completes the proof that 

 𝑒𝑖 → 0 , and also the proof of Lemma 4. 

Proof of Lemma 5: Let 𝐻𝑟(𝑛 𝐿) =   (𝑟≥1 𝐹 𝑚
𝑟 − 𝐶𝑟) (𝑛 𝐿)  , which is zero for 𝑛 𝐿 ∈ 𝑆𝑟 . For 

𝑛 𝐿 > 𝑚 − 1 2𝐿1−𝜀  𝐻𝑟(𝑛 𝐿)  ≤  𝑟≥1 𝐶𝑟 (𝜀 + 𝜎1−𝜀
𝑟 (𝑛 𝐿)  −1 by (3.3) and (3.14) . Also 

assuming𝐿  is large enough , 𝐻𝑟(𝑛 𝐿)  < 𝜀 for all 𝑛. 

Let {𝐼𝑖} be the partition defined in Lemma 4 except that now 𝜀1 = 𝜀 . Similar to proof that 𝐴𝑖
1−𝜀 → 0 , 

we see that for each 𝑖 
 

Using Lemma 1, 

 

𝑟≥1

  𝜑𝐿
𝑟 ∗ 𝜒𝐼𝑖𝑓

𝑟𝑑𝜇 ≤  

𝑟≥1

   𝜑𝐿
𝑟 ∗ 𝜒𝐼𝑖𝑓

𝑟𝑑𝜇  
𝐿∞ (𝐸𝑟 )

𝑛 𝐿 ∉𝑆𝑟

 𝜒𝐼𝑖𝑓
𝑟 

𝐿1(𝑑𝜇1−𝜀)
𝑛 𝐿 ∈𝐼𝑖−𝑆𝑟

≤  

𝑟≥1

𝐶𝑟

𝐾
 𝜒𝐼𝑖𝑓

𝑟 
𝐿1(𝑑𝜇1−𝜀)

 

because𝑛 𝐿 ∉ 𝑆𝑟  and 𝑥 ∈ 𝐸𝑟  implies  𝑛 𝐿 − 𝑥 > 𝛿 so that  𝑛 𝐿 − 𝑥 > 𝐿𝛿 = 𝐾 . So  for each 𝐽 

lim
𝐿→∞

𝑠𝑢𝑝 

𝑟≥1

  𝜑𝐿
𝑟 ∗ 𝑓𝑟𝑑𝜇 ≤  

𝑟≥1𝑛 𝐿 ∈𝐼𝑖−𝑆𝑟

𝐶𝑟

𝐾
  𝑓𝑟  

𝐼𝑖

𝑑𝜇1−𝜀  

Notice that 𝐻𝑟  is zero above 𝑀 = 𝑠𝑢𝑝 𝐼𝑖  . So summing over 𝐽 gives 

 

lim
𝐿→∞

sup 𝐿1−𝜀  

𝑟≥1

  (𝐻𝑟(𝑛 𝐿)  .  𝜑𝐿
𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀  ≤  

𝑟≥1𝑛 𝐿 >𝑚−1 2 

𝐶𝑟

𝐾
 

∫  𝑓𝑟  
𝐼𝑖

𝑑𝜇1−𝜀

𝜀 + 𝜎1−𝜀
𝑟 (𝑖𝑛𝑓𝐼𝑖)

𝐽

𝑖=0

≤  

𝑟≥1

𝐶𝑟

𝐾
 

 𝑓𝑟  𝑑𝜇1−𝜀

𝜀 + 𝜎1−𝜀
𝑟 (𝑥)

𝑀

−∞

 

 

   Because𝜀 + 𝜎1−𝜀
𝑟 (𝑥) is roughly constant on each 𝐼𝑖( except when 𝐽 = 0 , in which case the 

numerator is zero ) . 

For 𝑛 𝐿 ≤ 𝑚 − 1 2 , we use the fact that (𝐻𝑟(𝑛 𝐿)  ≤ 𝜀 and that for  

𝑥 ∈ 𝑠𝑢𝑝𝑝𝑓𝑟  , ( 𝑥 − 𝑛 𝐿) > 1 2  . So 
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𝐿1−𝜀  

𝑟≥1

  (𝐻𝑟(𝑛 𝐿)  .  𝜑𝐿
𝑟 ∗ 𝑓𝑟𝑑𝜇1−𝜀  

𝑛 𝐿≤𝑚−1 2  

≤  

𝑟≥1

𝜀𝐿1−𝜀    𝜑𝐿
𝑟  (𝑛 𝐿 − 𝑥) 

𝑛 𝐿≤𝑚−1 2  

 

𝐿∞ (𝐸𝑟 )

 𝑓𝑟 1 

≤ 𝐿1−𝜀    𝜑𝑟  (𝑛 − 𝐿𝑥)

 𝑛−𝐿𝑥 ≥𝐿 2 

 

𝐿∞ (𝐸𝑟 )

 𝑓𝑟 1 

which goes to zero as 𝐿 → ∞ because 

   𝜑𝑟(𝑛 − 𝐿𝑥)  𝑛−𝐿𝑥 ≥𝐿 2  
𝐿∞ (𝐸𝑟 )

<  
𝐶𝑟

𝐿𝑟≥1 by Lemma 1 . This proves Lemma 5 

Theorem4:[11]There is an absolutemaximal constant𝐶𝑟   such that  

lim
𝐿→∞

𝑠𝑢𝑝 𝐿1−𝜀  𝐴 + 𝜀 ≤  𝐶𝑟  
 𝑓𝑟  𝑑𝜇1−𝜀

𝜀 + 𝜎1−𝜀
𝑟 (𝑥)

𝑀

−∞𝑟≥1

≤ lim
𝐿→∞

𝑖𝑛𝑓 𝐿1−𝜀  𝐴  

Proof:  Appling Theorem 3 and Lemma 4 we show that , for𝐶𝑟 = max{
𝐶5

𝑟

𝐾
, 𝐶1

𝑟} with the result given 

by the approximated inequality say𝐿1−𝜀 𝐴 ≤ 𝐶𝑟  

The required inequality is obtained after taking the infinium and supremum over all 𝐿1−𝜀where𝐶5
𝑟  

define Lemma 4, we get from Lemmas 3 and 4 

 

𝑟≥1

(𝐶4
𝑟 − 𝐶4

𝑟 2)  
 𝑓𝑟  𝑑𝜇1−𝜀

𝜀 + 𝜎1−𝜀
𝑟 (𝑥)

𝑀

−∞

≤ lim
𝐿→∞

𝑖𝑛𝑓  𝐿1−𝜀  𝐴 −  𝐴 + 𝜀   

≤   𝜑𝑟 ∞ lim
𝐿→∞

𝑖𝑛𝑓   𝑓  𝑟𝑑𝜇1−𝜀  

𝐿

−𝐿

 𝑑𝑥  

𝑟≥1

 

Proposition 1:[11]. Given 0 < 𝜀 < 1, there is a set 𝐸𝑟 ⊂ [0,1] that is a-coherent but not quasi-

regular. 

Proof. Given a positive integer 𝑘, construct a cantor set, 𝐶𝑟(2𝑘 , 3𝑘), as follows. Remove2𝑘 − 1 

intervals of equal length from [0, 𝑙] leaving 2𝑘subintervals, each of length 3−𝑘 . Repeat the excision on 

each of the 2𝑘subintervals leaving 2𝑘  subintervals of length 3−2𝑘 . Repeat adinfinitum, so that after 

stage 1 the set𝐶1
𝑟 , has 2𝑘𝐼  subintervals, each of length3−𝑘𝐼 . Let 𝐶𝑟 2𝑘 , 3𝑘 =∩ 𝐶1

𝑟 . For every 𝑘, this 

set has dimension 𝜀 = 1 − 𝑙𝑛2 𝑙𝑛3 . Notice that 𝐶𝑟(2, 3) is the usual cantor 2/3 set. 
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