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ABSTRACT: The study of the mathematical series provides an advance in the concepts of analysis and 

probability, by contributing with the predictions and simulations for diverse performances. Serious mathematics 

saves time and energy in operations, so their study provides the construction of a solid statistical forecast. 

Nevertheless, the arithmetic series is limited to studying the effects of a single reason influencing the projections 

of the data. However, they exceed the calculations when the reasons become numerous. A real series could 

present other determinant factors for the simulation, which during its construction are essential in the 

generation of the information, making necessary a historical construction of data capable of absorbing these 

particularities. The purpose of this study is to elucidate this type of simulation, approaching a series with a 

number of finite ratios that we will call the sequence. This study presents three formulas that allows the 

construction of arithmetic series with multiple reasons, in which a single algorithm can simulate a whole set of 

interactions. 
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I INTRODUCTION 

In this paper we will discuss the study of a particularity of the numerical sequences, a set of numbers 

that represent a function whose domain is natural. Thus, we determine that:  

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝑓 𝑥 , 𝑤ℎ𝑒𝑟𝑒 𝑥 ∈ ℕ 

In this way, the sequence obeys a pattern or order of relation established by the function construction 

[11]. We must also conceptualize that the sequences can be finite, when in their construction it is possible to 

establish the last term, and infinite, when the last term is indefinite or impossible to determine [4]. We will study 

in this article the infinite sequences. 

Within the infinite sequences, we have two types to consider. Those that increase their ratio to each 

term, constructed by a condition established by the function, and those that do not alter their reason. The 

sequences that keep their reason constant, are given the special name of progressions. These progressions are 

divided into two models, arithmetic and geometric. 

Arithmetic progression, or simply (AP), is the sequence in which each next term is a result of the 

previous term, plus the ratio of the sequence. The geometric progression (GP), however, differs because the next 

term is the result of the product of its predecessor by the ratio of the sequence.  

These concepts were presented by the mathematician Karl f. Gauss and will be improved within this 

study in new procedures and approaches. Arithmetic progression will be used, which will henceforth be referred 

to as AP, going through an introduction of considerable advances in its structure. 

 

II SEQUENCE WITH MULTIPLE REASONS 

By adopting a progression that has a finite number of reasons, where they may be real or complex, they 

allow us to work with small amounts of influential terms, as well as large clusters of data. Therefore, in taking a 

finite number, one can observe that at some point the different reasons are closed, allowing the construction of a 

new cycle. Having this characteristic, the series behaves with the principles of modular arithmetic. 

Modular arithmetic, a concept that improved by Gauss and implemented by Fermat in his little 

theorem, presents a structure known as clock calculator, widely used in the construction of data encryption, 
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developed in 1977 by Rivest, Shamir and Adleman, known with key algorithm public or RSA, presenting in [5] 

[9] [10]. Encryption enables the secure use of the Internet for purchases, transmission of information, access to 

bank accounts, as well as the acquisition of shares and crypto-coins [6].  

The term clock calculator presents a modular sum by allowing the transformation of numbers into other 

numerical bases, imprisoning a result within a cycle. We have the computational language, the bits, that hold in 

module 2, our numbering system that uses module 10, and infinite possibilities that allow us to use diverse 

modules in the cryptography, when approaching a characterization of a specific value in a known module. In 

general we have: 

𝑋 = 𝑌 𝑚𝑜𝑑(𝑝), 
That is to say, that the number 𝑋 is now represented by the number 𝑌, in a periodic cycle of 𝑝 hours. 

 

III DETERMINING THE GENERAL TERM OF AT AP 

When we adopt at AP, in which the reasons are, even if in great finite quantity, we will have at one 

moment a closing cycle and another initiating. Taking an as a general form for each term, we have a1 𝑎1 =
 𝑓𝑖𝑟𝑠𝑡 𝑡𝑒𝑟𝑚 , 𝑎2 =  𝑠𝑒𝑐𝑜𝑛𝑑 𝑡𝑒𝑟𝑚  and𝑎3 =  𝑡ℎ𝑖𝑟𝑡 𝑡𝑒𝑟𝑚 , and so on. We will also consider𝑟1 =  𝑓𝑖𝑟𝑠𝑡 𝑟𝑎𝑡𝑖𝑜 , 

𝑟2 =  𝑠𝑒𝑐𝑜𝑛𝑑𝑟𝑎𝑡𝑖𝑜, etc. The construction of AP follows a linear addition of the ratios, that is: 

𝑎1 = 𝑎1 

𝑎2 = 𝑎1 + 𝑟1 

𝑎3 = 𝑎2 + 𝑟2 

𝑎4 = 𝑎3 + 𝑟3 

⋮ 
𝑎𝑘 = 𝑎𝑘−1 + 𝑟𝑘−1, 
𝑤ℎ𝑒𝑟𝑒𝑘𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑎𝑠𝑜𝑛𝑠. 

When the number of distinct reasons comes to end, we have a resumption in the sequence, assuming 

the same substitution order as presented above. So, we have the cycle closed when we reach the value of 𝑘 in 

the ratios. Soon our clock calculator will always have module 𝑘. 

Each turn in the clock will be represented by 𝑦, and so we can present the first equation that will be 

used in the deduction: 

𝑦 =
𝑛

𝑘
      (1) 

Where 𝑛 is the desired term within the sequence and 𝑘 that isthe number of ratios. However, you must 

enter another variable 𝑥, which represents the rest of this division or the values marked on the watch's display, 

where the hands run. So, we can write: 

𝑥 = 𝑛 − 𝑦𝑘   (1.1) 

Thus, this formula is a variation of (1), which will be adopted in some moments. 

From this stage, our approach will take two distinct paths that will meet at the end, which are the times 

when the division is exact and the cycle is closed, determined by 𝑥 =  0. As well as the non-exact divisions in 

which we 𝑥 > 0.  

Since 𝑦 =  1 is a determinant index of the cycles of our clock, we have a given turn; 𝑦 =  2, two 

complete turns and so on, we can conclude on, 𝑥 =  0 which makes 𝑛 = 𝑦𝑘.  

In constructing the first cycle, we present the following rationale: 

𝑎1 = 𝑎1 

𝑎2 = 𝑎1 + 𝑟1 

𝑎3 = (𝑎2) + 𝑟2 ⇒ 𝑎1 + 𝑟1 +  𝑟2 

𝑎4 = (𝑎3) + 𝑟3 ⇒ 𝑎1 + 𝑟1 +  𝑟2 + 𝑟3  

𝑎5 = (𝑎4) + 𝑟4 ⇒ 𝑎1 + 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4  

 ⋮ 

𝑎𝑘 = 𝑎1 +  𝑟𝑘

𝑘−1

𝑖=1

, (2) 

At the moment we have the closing of the first cycle, and when we observe the second part of [2], it is 

noticed that the construction depends exclusively on the parcels of the reasons. Therefore, with each cycle we 

have a further addition of the values of the ratios. 

The next term, in which the final ratio𝑟𝑘  is used, the new cycle is recalculated and the values 

reassembled the clock and the pointer traversed the same paths previously covered in the first cycle, making 

𝑎𝑘+1 = 𝑎1𝑚𝑜𝑑(𝑘), that is, the same initial position with the value of the module added to it. In this way we 

need to define the value of module k of our cycle: 
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𝑅 =  𝑟𝑘(3)

𝑘

𝑖=1

 

The value 𝑅 represents the sum of all the ratios; in this perspective, we have that the second cycle will 

have its construction governed by the following equation: 

𝑎𝑛 = 𝑎𝑘 + 𝑅 

Therefore, the second cycle is composed of the values of 𝑎𝑘  added once the sum of the ratios 𝑅, the 

third will be the value of 𝑎𝑘  added to twice the sum of the ratios 𝑅, which leads us to deduce: 

Table 01: Construction of the cycles of a sequence 

Cycle How to determine 

y=1 𝑎𝑛 = 𝑎𝑘  

y=2 𝑎𝑛 = 𝑎𝑘 + 𝑅 

y=3 𝑎𝑛 = 𝑎𝑘 + 2𝑅 

y=4 𝑎𝑛 = 𝑎𝑘 + 3𝑅 

⋮ ⋮ 
y=n 𝑎𝑛 = 𝑎𝑘 + (𝑦 − 1)𝑅 

 

Thus, we have the final equation for the general term of atAP, with multiple reasons in closed cycles, 

where the searched term 𝑛 is a multiple of the number of reasons 𝑘: 

𝑎𝑛 = 𝑎𝑘 +  𝑦 − 1 𝑅   (4) 

Now we will consider 𝑥 > 0, that is: 𝑥 = 𝑛 − 𝑦𝑘. Therefore, we have that y is a complete cycle and the 

rest x indicates the position of the term after the cycle. For this we will consider that 𝑦 < 1 means that the first 

cycle has not yet been completed, implying 𝑛 < 𝑘 and the value of 𝑥 represents the same position in the clock, 

then 𝑥 =  𝑛. Soon: 

𝑓𝑜𝑟𝑥 = 1 ⇒  𝑎1 

𝑓𝑜𝑟𝑥 = 2 ⇒  𝑎2 

𝑓𝑜𝑟𝑥 = 3 ⇒  𝑎3 

Then: 

𝑎𝑛 = 𝑎𝑥  

By the same reasoning presented in the deduction of (2), we conclude: 

𝑎𝑥 = 𝑎1 +  𝑟𝑥

𝑥−1

𝑖=1

, (5) 

To define in general, 𝑦 =  1, in this case, the value of 𝑛 >  𝑘, indicating that we will have a division, 

obtaining a value for y and another for 𝑥, representing the rest. Now we have the closed loop, returning the use 

of the value of 𝑅 presented in (3). 

The first value after the cycle closes will be, as in a clock, the length of the module added to the initial 

term of the series, as well as the second will be the sum of the module and the second term, and so on, ensuring 

that the positioning on the clock will be similar to those already presented in the first cycle. 

Since x is always a present value in the equation, we can assume that each cycle is directly connected 

to the value of the module, where we arrive at the deduction of (6): 

𝑎𝑛 = 𝑎𝑥 + 𝑦𝑅   (6) 

 In this way, y shows us how many laps we have already covered in the calculating clock, summarizing 

this point as follows: 

𝑖𝑓𝑥 = 0, 𝑏𝑒 𝑢𝑠𝑒𝑑 ∶  𝑎𝑛 = 𝑎𝑘 +  𝑦 − 1 𝑅(4) 

𝑖𝑓𝑥 > 0, 𝑏𝑒 𝑢𝑠𝑒𝑑 ∶  𝑎𝑛 = 𝑎𝑥 + 𝑦𝑅 (6) 

 

IV DETERMINING THE SUM OF THE TERMS OF AT AP 

As seen earlier, we will consider the sum of terms of at AP with two situations, the first, before the 

cycle closes and the second after that, to construct an equation that satisfies both conditions. 

In this case, if 𝑦 =  0, then 𝑛 < 𝑘, the division of (1) becomes impossible, which leads us to conclude 

that: 

𝑆𝑛 =  𝑎𝑛 , 𝑤ℎ𝑒𝑟𝑒𝑛 = 𝑥

𝑥

𝑖=1

 (7) 

 We will call this sum of 𝐵, 
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𝐵 =  𝑎𝑛

𝑥

𝑖=1

→ 𝑆𝑛 = 𝐵 (8) 

Thus, a methodology will be developed to calculate 𝐵, represented as follows: 

𝑎1 = 𝑎1 

𝑎2 = 𝑎1 + 𝑟1 

𝑎3 = 𝑎1 + 𝑟1 + 𝑟2 

𝑎4 =  𝑎1 + 𝑟1 + 𝑟2 + 𝑟3  

𝑎5 =  𝑎1 + 𝑟1 + 𝑟2 + 𝑟3 + 𝑟4  

 ⋮ 
𝑎𝑛 =  𝑎1 + 𝑟1 +  𝑟2 + 𝑟3 + 𝑟4 + ⋯𝑟(𝑛−1) 

⋮ 

 𝑎𝑛 =  𝑛𝑎1 + (𝑛 − 1)𝑟1 + (𝑛 − 2)𝑟2 + (𝑛 − 3)𝑟3 + (𝑛 − 4)𝑟4 + ⋯ 1𝑟(𝑛−1) 

Since x = n, we have: 

 𝑎𝑥 =  𝑥𝑎1 + (𝑥 − 1)𝑟1 + (𝑥 − 2)𝑟2 + (𝑥 − 3)𝑟3 + (𝑥 − 4)𝑟4 + ⋯ 1𝑟(𝑛−1) 

The 𝑛 − 1 index is understood to be the last reason before closing the cycle, and we will now call it 𝑖, 
as a variable that will be the index of both the ratio repetition factor and the ratio itself: 

 𝑎𝑥 =  𝑥𝑎1 + (𝑥 − 1)𝑟1 + (𝑥 − 2)𝑟2 + (𝑥 − 3)𝑟3 + (𝑥 − 4)𝑟4 + ⋯ 1𝑟𝑖  

⋮ 

 𝑎𝑥 =  𝑥𝑎1 +  (𝑥 − 𝑖)𝑟𝑖

𝑥−1

𝑖=1

 

By (8): 

𝐵 =  𝑥𝑎1 +  (𝑥 − 𝑖)𝑟𝑖

𝑥−1

𝑖=1

 (9) 

When we have the value of 𝑥 =  𝑘, the clock will complete the first round, then we will have 𝑦 =  1 

and 𝑥 =  0, so we will define another marker that we will call 𝐴, where the variable becomes 𝑘. With the closed 

cycle we will have 𝑘 =  1, being able to consider by (7) and (8) that: 

𝐴 =  𝑎𝑛

𝑘

𝑖=1

(10) 

Analogously to the procedure presented for marker 𝐵, resulting from (9), we will have: 

 𝑎𝑘 =  𝑘𝑎1 + (𝑘 − 1)𝑟1 + (𝑘 − 2)𝑟2 + (𝑘 − 3)𝑟3 + (𝑘 − 4)𝑟4 + ⋯ 1𝑟𝑖  

⋮ 

 𝑎𝑘 =  𝑘𝑎1 +  (𝑘 − 𝑖)𝑟𝑖

𝑘−1

𝑖=1

 

By (10): 

𝐴 =  𝑘𝑎1 +  (𝑘 − 𝑖)𝑟𝑖

𝑘−1

𝑖=1

 (11) 

Considering only the first revolution of the clock, we could adopt 𝑆𝑛 = 𝐴, but it is necessary to analyze 

the infinite cycles that may exist, requiring a more comprehensive reasoning; as shown above, when closing the 

cycle, values or pointers on the clock start to go through the same paths prior to closing, however, in relation to 

the sum of the ratios, each x factor of the term must be connected to a conditioned value 𝑅, so each term is in 

what we shall call the upper step, with the height of this step as the value of 𝑅.  

To insert these values into the equation, we have to define items such as the number of laps in the 

cycle, which we will call 𝐴𝑦, plus the number of terms that walk within the plots to reach the next cycle, ie 𝐵, in 

addition to a lifting factor of steps of this ladder, this being the direct product of the height 𝑅 by the number of 

cycles and a position in the cycle 𝑥, that is 𝑥𝑅𝑦.  

Consequently, the equation that corrects the cycle and its positioning is 𝐴𝑦 +  𝐵 +  𝑥𝑅𝑦 , when 

defining each step in its positioning. Fig. 01 presents the simulation of a PA with 4 reasons, being𝑟1positive,𝑟2 

positive, 𝑟3negative e 𝑟4 positive, being𝑅 = 2, allowing a better view of the concept presented. 
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Notice that the values oscillate at the same time that they rise in a certain linearity. Separating each 

group of four terms 𝑘, which represent the cycle of the ratios, we have steps formed as if they were a ladder, 

shown in Fig. 02: 

 
 

It may be noted that the closed loop represented by 𝐴 forms the basis of each step, in addition to that 

the height of the step is given by 𝑅. Each point represents the same value of the previous cycle but is at a height 

which is represented by the product of the step number (cycle) 𝑦, its own height which is given by 𝑅 and its 

positioning which is 𝑥, then comes the term 𝑥𝑅𝑦, shown above. Each block is 𝐴, the number of blocks of the 

base is given by 𝐴𝑦. 

Each point outside the closed loop is given by the sum of its values, represented by 𝐵 . When 

determining a term outside the closed loop, presented by𝑎17 , 𝑎18  or 𝑎19, it is necessary to have the initial value 

of the base containing it 𝐴𝑦, its positioning 𝑥𝑅𝑦 and the sum of the off-cycle terms to itself, that is𝐵, then any of 

them within their incomplete cycle is given by 𝐴𝑦 +  𝐵 +  𝑥𝑅𝑦. 

The cycles that were previous to the sum, that is, the complete cycles will be the area occupied by 

them. Fig.03 presents this visually: 

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19

figure 01: simulation of a series with 4 reasons, being R=2

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19

figure 02: separation in cycles (steps)
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Note that in this way, the region occupied by the yellow area (𝑌𝑎) of Fig. 03, represents a part of the 

ladder where the cycle is not closed, that is, without full step, it will be the result of the factors of the base by the 

values already covered by the end term, therefore,  

𝑌𝑎 = 𝐴𝑦 + 𝐵 + 𝑥𝑅𝑦. (12) 

To find the value of the white region, which represents the number of complete steps, it can be seen 

that it has a triangular shape, so in a very intuitive way we have that the region occupied by these values 

represents the area of the triangle that the contains. Fig. 04 will allow you to view this property: 

 
 

The base of the triangular region is given by 𝑦 − 1 times, its height is given by the product of step 

height 𝑅, by the cycle where they are 𝑦, and the quantity of ratios or values in each cycle 𝑘, thus being the area 

of the region white (𝑊𝑎) is expressed by: 

𝑊𝑎 =
𝑏ℎ

2
 

𝑊𝑎 =
(𝑦 − 1)𝑅𝑦𝑘

2
 

For a better presentation, we will adopt: 

𝑊𝑎 =
𝑘𝑅𝑦(𝑦 − 1)

2
 (13) 

Finally, to find the sum of the finite terms of a PA, we must add the area of the two regions, the sum of 

the parts of (12) and (13) being: 

𝑆𝑛 =  𝑊𝑎 + 𝑌𝑎 

𝑆𝑛 =
𝑘𝑅𝑦(𝑦 − 1)

2
+ 𝐴𝑦 + 𝐵 + 𝑥𝑅𝑦 (14) 

 Note that (14) is composed of two parts, the first one represented by the ratio, works with the closed 

cycles and the second with the terms within a non-complete cycle. When the cycle is closed the second part will 

admit null value and the first one will present the result. 

 

 

B

xRy

A R

Ay

y

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19

figure 03: the elements of each step

A Ryk

y-1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19

Figure 04: the elements of the white region
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V CONCLUSION 

The use of the mathematical series has a great variety of applications, in all cases, the traditional 
equations that allow only a growth rate are used. If a simulation with multiple reasons is required, this 
simulation was compromised by the limitation of the available equations. 

It is believed that with the use of these equations presented here, they can contribute substantially to the 
advancement in the studies of these series, providing a gain in time and precision in the future calculations.  

Given an arithmetic progression (AP) with multiple reasons, one should adopt the following procedure: 
either 𝑛 the number of terms or term sought, 𝑘 the number of reasons, 𝑅 the sum of the ratios, 𝑦 =

𝑛𝑘and𝑥 the 

rest of this division, for the general term we have: 
If𝑥 = 0be used: 𝑎𝑛 = 𝑎𝑘 +  𝑦 − 1 𝑅   (4) 
If𝑥 > 0be used: 𝑎𝑛 = 𝑎𝑥 + 𝑦𝑅 6  
For the sum of the finite terms of at AP in these conditions use: 𝑆𝑛 =

𝑘𝑅𝑦(𝑦 − 1)

2
+ 𝐴𝑦 + 𝐵 + 𝑥𝑅𝑦 (14) 

Being: 𝐵 =  𝑥𝑎1 +  (𝑥 − 𝑖)𝑟𝑖𝑥−1

𝑖=1

 (9) 

and 𝐴 =  𝑘𝑎1 +  (𝑘 − 𝑖)𝑟𝑖𝑘−1

𝑖=1

 (11) 

With these equations it will be possible to predict any term within a simulation or sequence with 
several influencing factors (reasons), as well as to calculate the sum of all terms up to the desired term.  
 

–
–

–
–

–

–

–
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