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ABSTRACT: Fifth degree Hermittian polynomial shape functions were used in this work for the flexural 

analysis of Euler – Bernoulli beams with a prismatic cross-section. The analysis used the finite element stiffness 

method to generate the stiffness and load matrices for the problem. The beam of length l, considered was 

clamped at x = 0, and simply supported at x = l, and carried a linearly distributed transverse load on the 

longitudinal axis. The results showed that the fifth degree Hermittian polynomial shape function yielded exact 

solutions for the deflection, the bending moment and shear force distributions. The effectiveness of the use of 

fifth degree Hermittian polynomial shape functions in the finite element stiffness method to solve the flexural 

problem of a propped cantilever beam under linearly distributed transverse load was thus established. 

KEYWORDS: Fifth degree Hermittian polynomial shape functions, Euler – Bernoulli beam, finite element 

method, stiffness equation, stiffness matrix. 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 28-03-2018                                                                             Date of acceptance: 12-04-2018 

----------------------------------------------------------------------------------------------------------------------------- ---------- 

 

I. INTRODUCTION 

Beams are structural elements designed to support transverse loads by the development of flexure. 

Beam is a three dimensional structure with a longitudinal axis that is usually more than the transverse 

dimensions. Beams are supported in various ways; and the support conditions determine the statical determinacy 

or otherwise of the beam flexure problem [1, 2]. 

Statically determinate beams are those beams that can analysed for support reactions and internal forces 

using the equations of static equilibrium alone. Conversely, statically indeterminate beams cannot be solved for 

reactions and the internal force distributions using the equations of static equilibrium only. Additional 

considerations are usually used to solve statically indeterminate beam problems. Beams are widely used in 

buildings, bridges, machines, ships and aerospace, and aircraft structures as well as naval structures [3, 4]. 

Theories used to describe the flexural behaviour of beams are: Euler – Bernoulli beam theory [5], 

Timoshenko beam theory [6], Mindlin beam theory, Vlasov beam theory and refined/shear deformable beam 

theories [7, 8]. Euler – Bernoulli beam theory has been found to be satisfactory for thin (slender) beams but 

unsatisfactory in the flexural analysis of moderately thick and thick beams; since shear deformation plays a 

significant role in their flexural analysis/behaviour [9, 10]. Moderately thick and thick beams are analysed more 

accurately using Timoshenko, Vlasov, Mindlin and the refined shear deformable beam theories. The three 

dimensional theory of elasticity approach can also be used to analyse thick beams under transverse loads. 

The fundamental assumptions of the Timoshenko, Vlasov, Mindlin and refined/shear deformable beam 

theories which make them suitable for the flexural analysis of moderately thick beams is that shear deformation 

is taken into account in the formulation of their governing equations, irrespective of whether variational calculus 

methods were adopted or equilibrium methods were adopted. 

The focus of this work is the Euler – Bernoulli beam theory. Methods found in the literature for the 

flexural analysis of Euler – Bernoulli beams in order to solve the governing equations, and find support 

reactions and internal bending moments and shear force distributions are force methods, flexibility methods, 

energy methods [11, 12]. Specific methods include: slope – deflection method, method of consistent 
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deformations, Macaulay’s method of integration, method of singularity functions, moment distributions method, 

method of virtual displacements, method of virtual work etc. 

In this work, fifth degree Hermittian polynomial functions are used for the flexural analysis of a 

statically indeterminate Euler – Bernoulli beam. 

 

II. THEORETICAL FRAMEWORK 

The Euler – Bernoulli beam theory assumes as follows:[7, 13] 

(i) The beam has a longitudinal plane of symmetry, with the cross-section symmetric about this plane. Also, 

the loads and supports are symmetric about this longitudinal plane of symmetry. With these conditions, the 

beam will only undergo bending deformation and no twisting. 

(ii) Cross-section which are plane and perpendicular to the axis of the undeformed beam remain plane and 

perpendicular to the deflection curve of the deformed beam. This is valid provided the beam is sufficiently 

long and slender. 

(iii) Deformation in the transverse direction and hence transverse strain is considered insignificant and can be 

disregarded. 

(iv) Beam material is linear elastic, isotropic and homogeneous. 

(v) The beam is in general a three dimensional body with a fairly complex three dimensional stress state. 

Since there are no forces in the z – direction, the beam can be considered to be in plane stress state and the stress 

– strain relations become: 

   
1

( )xx xx yy
E

                         (1) 

   
1

( )yy yy xx
E

                         (2) 

   ( )zz xx yy
E


            (3) 

   
1

xy xy
E

 
          (4) 

   0xz          (5) 

   0yz          (6) 

where xx, yy are normal stresses; xy is the shear stress, xx, yy, zz are normal strains; xy, xz, yz are the shear 

strains; E is the Young’s modulus of elasticity, and  is the Poisson’s ratio. 

 The assumption that the transverse normal stresses yy are considered insignificant compared to the 

flexural stresses xx reduces the stress strain relations to the one dimensional stress – strain equation 

   
xx

xx
E


          (7) 

Stresses are related to the distances, y from the neutral axis by: 

   
E

y
R

           (8) 

where R is the radius of curvature, and E is the Young’s modulus of elasticity. 

The resultant force of the normal stress distribution over the cross-section must be zero, while the resultant 

moment of the normal stress distribution is Mxx, resulting in the equations: 

   0
E E

dA ydA yA
R R


           (9) 

   
2 2E

M ydA y dA y dA
R y


           (10) 

where y  is the centroid of the cross-section. 

    0y          (11) 

The neutral axis passes through the centroid of the cross-section. 

    
My

I


         (12) 
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where     
2I y dA         (13) 

I is the second moment of area or the moment of inertia of the cross-section about the neutral axis. 

 

2.1 Research aim and objectives 

The research aim is to use the fifth degree Hermittian polynomial functions as shape functions in a finite 

element analysis of statically indeterminate Euler – Bernoulli beam with prismatic cross-section. The specific 

objectives are: 

(i) to formulate fifth degree Hermittian polynomials that satisfy general boundary conditions. 

(ii) to express the deflection function in terms of the fifth degree Hermittian polynomial shape functions for a 

general Euler – Bernoulli beam problem. 

(iii) to express the deflection function for the problem of Euler – Bernoulli beam of length l, with clamped 

support at x = 0 and simple support at x = l in terms of fifth degree Hermittian polynomial shape function. 

(iv) to find the element stiffness matrix and the load matrix for the statically indeterminate Euler – Bernoulli 

beam problem considered by evaluation of the appropriate integrations. 

(v) to find the stiffness equation for the statically indeterminate Euler – Bernoulli beam considered. 

(vi) to solve for the unknown deflection parameters of the deflection function by inversion of the stiffness 

equation and hence determine the deflection function. 

(vii) to find the bending moment distribution along the longitudinal axis of the Euler – Bernoulli beam 

considered using the bending moment – deflection relations. 

(viii)  to find the shear force distribution along the longitudinal axis of the Euler – Bernoulli beam considered 

using the shear force – deflection relation. 

 

III. METHODOLOGY 

Fifth degree Hermittian polynomial Ph(x) that satisfies the end conditions 

1 0 1( )hP x      (14)   1 0( )hP x l     (15) 

1 0 0( )hP x     (16)   1 0( )hP x l      (17) 

1 0 0( )hP x     (18)   1 0( )hP x l      (19) 

can be found from the polynomial: 

        
2 3 4 5

1
0 2 3 4 5( )

a x x x x x
p x a a a a a

l l l l l
          (20) 

Thus, 

       
3 4 5

1 01 10 15 6( )h

x x x
P x w

l l l

 
    
 

    (21) 

and  1 0( ) ( )hw x N x w         (22) 

where N1h(x) is the fifth degree Hermittian polynomial shape function corresponding to the end conditions 

Equations (14 – 19). 

Similarly for  

2 0 0( )hP x      (23)   2 0( )hP x l    (24) 

2 0 1( )hP x      (25)   2 0( )hP x l     (26) 

2 0 0( )hP x      (27)   2 0( )hP x l     (28) 

We find 

       
3 4 5

2 06 8 3( )h

x x x x
P x lw

l l l l

 
    

 
     (29) 

For, 

3 0 0( )hP x      (30)   3 0( )hP x l     (31) 

3 0 0( )hP x      (32)   3 0( )hP x l      (33) 

3 0 1( )hP x      (34)   3 0( )hP x l      (35) 

We have 
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        
2 3 4 5

2
3 0

1 3 3 1

2 2 2 2
( )h

x x x x
P x l w

l l l l

 
    

 
    (36) 

For, 

4 0 0( )hP x      (37)   4 1( )hP x l     (38) 

4 0 0( )hP x      (39)   4 0( )hP x l      (40) 

4 0 0( )hP x      (41)   4 0( )hP x l      (42) 

We have 

      
3 4 5

4 10 15 6( )h l

x x x
P x w

l l l

 
   
 

     (43) 

For 

5 0 0( )hP x      (44)   5 0( )hP x l     (45) 

5 0 0( )hP x      (46)   5 1( )hP x l      (47) 

5 0 0( )hP x      (48)   5 0( )hP x l      (49) 

We have 

      
3 4 5

5 4 7 3( )h l

x x x
P x lw

l l l

 
    

 
     (50) 

For 

6 0 0( )hP x      (51)   6 0( )hP x l     (52) 

6 0 0( )hP x      (53)   6 0( )hP x l      (54) 

6 0 0( )hP x      (55)   6 1( )hP x l      (56) 

We have 

      
3 4 5

2
6

1 1

2 2
( )h l

x x x
P x l w

l l l

 
   

 
     (57) 

The deflection function can be expressed as: 

 1 2 3 4 5 6( ) h h h h h hw x P P P P P P            (58) 

 ( ) T T
nw x w N          (59) 

 

0

0

0
( )

l

l

l

w

w

w
w

w

w

w

 
 

 
 
 
 
 

 
 

 

          (60) 

 

4.0 Results 

Case 1: 

 
Figure 1: Statically indeterminate propped cantilever Euler – Bernoulli beam 
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For fixed simply supported Euler – Bernoulli beam, the boundary conditions are: 

    00 0( )w w        (61) 

    00 0( )w w         (62) 

    0( )lw w x l         (63) 

0( )M l      (64)   0lw      (65) 

Then, the deflection function becomes 

   3 0 5( ) ( ) ( )h h lw x N x w N x w        (66) 

   3 0 5( ) ( ) ( )h h lw x N x w N x        (67) 

   3 0 5( ) ( ) ( )h h lw x N x N x         (68) 

             
2 3 4 5 3 4 5

0

1 3 3 1
4 7 3

2 2 2 2
( ) l

x x x x x x x
w x

l l l l l l l

   
            

   
  (69) 

Here, 0  and l are the unknown generalised deflection parameters. The Hermittian polynomials are the shape 

functions 

   1 0 2( ) lw x N N           (70) 

where  

        
2 3 4 5

1 3

1 3 3 1

2 2 2 2
h

x x x x
N N

l l l l
          (71) 

      
3 4 5

2 5 4 7 3h

x x x
N N

l l l
           (72) 

The stiffness matrix is 

   

0

l
T iv
u uk EI N N dx         (73) 

where  

  

4

1 24
( ( )) ( ( ) ( ))iv iv iv

u u

d
N N x N x N x

dx
       (74) 

The load (force) vector is 

   

0

( )

l
T
uF p x N dx         (75) 

Thus, 

 
1

1 2
20

( )
( ( ) ( ))

( )

l
iv iv

N x
K EI N x N x dx

N x

 
  

 
       (76) 

 
1 1 1 2

0 2 1 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

l iv iv

iv iv

N x N x N x N x
K EI dx

N x N x N x N x

 
   

 
       (77) 

The elements of the stiffness matrix are: 

  11 1 1

0

( ) ( )

l
ivk EI N x N x dx         (78) 

  12 1 2

0

( ) ( )

l
ivk EI N x N x dx         (79) 
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  21 2 1

0

( ) ( )

l
ivk EI N x N x dx         (80) 

  22 2 2

0

( ) ( )

l
ivk EI N x N x dx         (81) 

By differentiation, 

  

2 3 4

1 2 3 4 5

1 2 3 3 3 4 1 5

2 2 2 2

x x x x
N

l l l l
          (82) 

  

2 3

1 2 3 4 5

1 9 2 3 5 4
6

2 2

x x x
N

l l l l
             (83) 

  

2 3

1 2 3 4 5

1 9 18 10x x x
N

l l l l
           (84) 

  

2

1 3 4 5

9 36 30x x
N

l l l


           (85) 

  1 4 5

36 60iv x
N

l l
          (86) 

  

2 3 4

2 3 4 5

3 28 15
4

x x x
N

l l l
            (87) 

  

2 3

2 3 4 5

24 84 60x x x
N

l l l
           (88) 

  

2

1 3 4 5

24 168 180x x
N

l l l


           (89) 

  1 4 5

168 360iv x
N

l l
          (90) 

       
2 3 4 5

1 1 5
0 0

1 3 3 1 36 60

2 2 2 2
( ) ( )

l l
iv x x x x

N x N x dx dx
l l l l l l

  
      

       (91) 

                
2 3 4 5

4
0

1 1 3 3 1 60
36

2 2 2 2

l
x x x x x

dx
l l l l ll

 
     

    (92) 

       
3

3

35l
          (93) 

       
2 3 4 5

1 2 4 5
0 0

1 3 3 1 168 360

2 2 2 2
( ) ( )

l l
iv x x x x x

N x N x dx dx
l l l l l l

  
      

      (94) 

                
2 3 4 5

4
0

1 1 3 3 1 360
168

2 2 2 2

l
x x x x x

dx
l l l l ll

 
     

    (95) 

       
3

4

35l
          (96) 

     
3 4 5

2 2 4 5
0 0

168 360
4 7 3( ) ( )

l l
iv x x x x

N x N x dx dx
l l l l l

  
      

       (97) 
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              
3 4 5

4
0

1 360
4 7 3 168

l
x x x x

dx
l l l ll

 
     

     (98) 

       
3

192

35l
          (99) 

      
3 4 5

2 1 4 5
0 0

36 60
4 7 3

l l
iv x x x x

N N dx dx
l l l l l

  
      

       (100) 

                
3 4 5

4
0

1 60
4 7 3 36

l
x x x x

dx
l l l ll

 
     

     (101) 

          
3

4

35l
          (102) 

The force vector is 

 
       

     

2 4 5

3 4 5
0

1 3 3 1

2 2 2 2
1

4 7 3

l
x x x x

x l l l l
F p dx

l x x x

l l l

 
   

 
 

 
   
 




     (103) 

1

210

6

210

pl

F

pl

 
 

  
 

 
 


          (104) 

1

3
2

3 4

35 35 210

4 192 6

35 35 210

l

cEI
p

cl l

   
    

    
    

   
   

        (105) 

1

3
2

1
3 4 6

4 192 8

6

cEI
pl

cl

 
   

    
   

 
 

         (106) 

4
1

2

1
3 4 6

4 192 8

6

c pl

EIc

 
   

    
   

 
 

         (107) 

Solving, 

4 4
1

2

8
8 120

1201 1

120

c pl pl

EI EIc

 
    

      
    

 
 

        (108) 

Hence, 

       
2 3 4 5 41 3 3 1 8

2 2 2 2 120
( )

x x x x pl
w x

l l l l EI

 
     
 
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      
3 4 54

4 7 3
120

pl x x x

EI l l l

 
   
 
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This yields the exact solution for the deflection function. 

The bending moment is found from the bending moment – deflection equation. 
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IV. DISCUSSION 

Fifth degree Hermittian polynomials that satisfy the end conditions were used in this work to solve the 

statically indeterminate flexural problem of an Euler – Bernoulli beam under given transverse load distribution. 

The problem considered was an Euler – Bernoulli beam clamped at the left end x = 0, and simply supported at 

the right end x = l, where l is the length of the beam, and the x coordinate variable is used to define the 

longitudinal beam axis. The beam is subjected to a linear distribution of load applied transversely to the 

longitudinal axis. 

The fifth degree Hermittian polynomial functions were used to express the unknown deflection 

function as Equation (58). The boundary conditions –  Equations (61 – 65) of the specific problem considered 

were applied to the deflection function to obtain the simplified deflection function (also in terms of fifth degree 

Hermittian functions) that satisfied the boundary conditions as Equation (68) or (69). The displacement finite 

element method was used to express the stiffness matrix and the load matrix in terms of the fifth degree 

Hermittian polynomial shape functions as Equations (73) and (75) respectively. The stiffness matrix terms were 

evaluated using Equations (78) – (81). The load vector was evaluated using Equation (103) as Equation (104). 

The finite element stiffness equation was thus expressed as Equation (105). The stiffness equation was solved to 
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obtain the unknown deflection parameters of the deflection function as Equation (108). The deflection was thus 

determined as Equation (111). It was observed that the deflection function obtained using the fifth degree 

Hermittian polynomial shape functions were the exact solution to the problem. The bending moment distribution 

was obtained from the bending moment – deflection relations as Equation (118). Similarly, the shear force 

distribution, obtained using the shear force deflection relation was given by Equation (119). It was observed that 

both the bending moment distribution and the shear force distribution have exact solutions for bending moment 

and shear force for the problem considered. The bending moment at the fixed support was found as Equation 

(120). The shear force at the fixed support was found as Equation (121).  The shear force of the simple support 

was obtained as Equation (123). 

 

V. CONCLUSION 

The following conclusions are made from the study: 

(i) Fifth degree Hermittian polynomial shape functions can be effectively used in the finite element 

displacement (stiffness) method to solve the flexural problem of statically – indeterminate Euler – Bernoulli 

beams. 

(ii) Fifth degree Hermittian polynomial shape functions are constructed to aprori satisfy the relevant boundary 

conditions of the beam, and hence yield exact solutions for deflections, bending moments and shear force 

distributions within the theoretical framework of the Euler – Bernoulli beam theory. 

(iii) The boundary value problem (BVP) of solving the ordinary differential equation of flexure of Euler – 

Bernoulli beams subject to the boundary conditions is converted to a problem of linear algebra where the 

unknown displacement parameters of the deflection function are the unknowns to be determined. 

(iv) The use of numerical integration algorithms permits the extensions of the method to Euler – Bernoulli 

beams with non-prismatic cross-sections. 

(v) Integration software tools can be used to evaluate the integration problems involved in the evaluation of the 

elements of the stiffness matrix and the load matrix. 
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