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Abstract 

Blood supply chain management is important and effective in providing timely availability of blood and blood 

products there is an emergency and critical healthcare delivery. The problem of hospitals is that they have to deal 

with demand fluctuations, the perishability of blood products and logistical inefficiencies which cause shortages, 

wastage or delays and, inevitably, affect patient outcomes. The present study, an inventory model is developed for 

managing blood supplies, which are inherently spoilable and sensitive to demand fluctuations. We have 

considered a model, which accounts for time dependent and uncertain demand represented in both triangular 

fuzzy and cloud fuzzy environments, which better reflect real-word uncertainties in blood utilization rates. A 

deterioration rate influenced by preservation technology investment is incorporated, emphasizing the critical role 

of refrigeration and storage protocols in mitigating blood wastage. The total inventory cost includes setup, 

procurement, holding, deterioration, shortage, and preservation costs over a finite planning horizon. A non-linear 

optimization framework is formulated to minimize the total cost by jointly determining the optimal inventory 

depletion time and investment in preservation technology. The model is particularly applicable to healthcare 

systems and blood banks aiming to balance cost-efficiency with life-saving service levels. Defuzzification 

techniques such as Yager’s ranking index are used for decision-making under fuzzy demand scenarios, offering a 

more realistic and adaptable decision-support system for the blood supply chain. The model is illustrated by a 

numerical example. Sensitivity analysis is also performed. 
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I. Introduction 

Blood supply chain management is an integral part of a healthcare system, keeping the lifesaving blood 

and blood products flowing where it is needed. Hospitals struggle to optimize their management of blood products 

as supply is affected with fluctuating demand, a limited shelf life and unpredictable emergencies. These 

complexities frequently perplex traditional methods, leading to shortages, waste, or delays that can influence 

patient results unfavorably. However, the integration of data driven strategies, to overcome these challenges is a 

transformative approach in blood supply chain management. Through the use of data analytics, hospitals can better 

manage inventory levels, forecast demand patterns, and refine distribution channels to ensure supplies are readily 

available when needed without creating wastage. 

This paper proposes a mathematical inventory model for a single deteriorating item — in this case, blood 

— under uncertain, time-dependent demand. The model incorporates both triangular fuzzy and cloud fuzzy 

representations of demand to manage imprecision and partial knowledge effectively. Importantly, it integrates the 

impact of preservation technology investments on the deterioration rate, acknowledging the critical role of 

refrigeration and controlled storage in extending blood shelf-life. 

Shortages are permitted and assumed to be fully backlogged, reflecting situations where emergency 

requests are delayed but not denied. The model includes the total cost associated with the system: setup cost, 
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procurement cost, inventory holding cost, deterioration loss, shortage cost, and the cost of preservation 

technology. The optimization problem is formulated to minimize the total inventory cost (TIC) with respect to 

cycle time and preservation technology expenditure, offering valuable insights for decision-makers in blood banks 

and hospital supply departments. 

 

II. Literature Review 

Nayeri, S., et al (2023). In adapting to the ever-changing paradigm of quality of care in healthcare 

industry, a data driven model for sustainable and resilient supplier selection and order allocation tackles critical 

hurdles in supply management in such a responsive healthcare supply chain. This kind of model integrates 

sustainability criteria such as environmental, social, and economic criteria with resilience measures, to maintain 

supply chain continuity in case of disruptions. The model analyzes historical data, Realtime data and predictive 

analytics to evaluate the potential suppliers on their level of reliability, ability to comply towards ethical practices, 

risk mitigation & environmental compliance. Further it optimizes a match of an order allocation that minimizes 

carbon footprint while considering the cost efficiency, delivery time and capacity constraints. In the case of 

healthcare with immediate need for timely availability of critical supplies such as medicines and medical 

equipment, this approach aligns operational demand with longer term sustainability goals to improve decision 

making. Through advanced technology like machine learning and blockchain, it resolves challenges like data 

integration, supplier collaboration and changing regulations. The model is then utilized as a case study in the 

healthcare system to show the risks can be mitigated, costs reduced, and supply chain agility enhanced during 

emergencies such as pandemics. 

Bhatia, A., et al (2019). A healthcare supply chain driven by big data is transformative in that it utilizes 

data of massive volume to enable efficiency, resilience and responsiveness. Big data analytics helps in real time 

tracking of medical supplies, predictions around demand patterns and optimization of inventory level to avoid 

shortage or overstocking. Healthcare organizations can forecast disruptions (such as pandemics or natural 

disasters) by analyzing historical and real time data, and proactively develop strategies to maintain supply chain 

continuity. Machine learning and AI are some of the advanced techniques that allow trends to be identified and 

therefore better decisions to be made, and to allocate resources cost—effectively.  Big data ensures visibility of 

the supply chain embarking upon all the stakeholders such as suppliers, distributors and healthcare providers. 

Strategic solutions like adopting in cloud-based platforms with data governance, and ensuring good data 

governance becomes a strategic imperative to address the challenge of data silos, security and integration 

challenges of track and trace. Its potential lies in an ability to personalize the supply chain processes to address 

the custom demand, for example, rapid delivery of crucial medicines or conformity to regional healthcare needs. 

In addition to streamlining operations, a big data driven approach enables better patient care, cuts down on waste 

and promotes sustainability – representing a major change of course toward smarter, more efficient healthcare 

supply chain management. 

Delen, D., et al (2019). By integrating geographical and spatial data, GIS-based analytics has great 

transformative potential for improving management of the blood supply chain, optimizing collection, storage and 

distribution. Geographic Information Systems (GIS) serve as real time map of the donor locations, blood bank 

inventory and healthcare facility, and improve deployment decision through better resource allocation. Using 

population density, healthcare demands and transportation networks patterns GIS can spot the right areas to start 

blood collection drives and storage facilities.  It allows routing of the logistics, reduce delays and fast delivery of 

blood products, especially in case of emergency. GIS based systems can predict demand taking into account 

seasonal fluctuations and regional health challenges and thereby reinforce proactive inventory management so 

that the perishable blood products are not wasted. And they improve coordination between blood banks, hospitals 

and emergency services by centralizing location specific data. With targeted investments and capacity-building 

initiatives such investments can address challenges in data integration, maintaining real-time accuracy and 

personnel training in GIS tools. Healthcare systems can improve the efficiency, responsiveness and sustainability 

of the blood supply chain through the utilization of GIS analytics, resulting in better patient outcomes and saving 

lives. 

 Lotfi, R., et al (2022). By leveraging the uncertainty modeling of fuzzy theory and the emerging 

advanced data analytic approaches, a hybrid fuzzy and data driven robust optimization approach can improve 

resilience and sustainability in healthcare supply chains. The utilization of fuzzy logic in a supply chain system 

enables the handling of uncertain and ambiguous data required to manage products subject to fluctuating demand, 

supply disruptions and emergency incidents of a healthcare supply chain. Data driven methods—through 

integration with the existing tools—provides real time insight and predictive capabilities for inventory, supplier 

management, and other times where decisions are based on forecast. This system is further enhanced through such 

a vendor managed inventory (VMI) approach, whereby inventory control is handed over to suppliers, who are 
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thus made responsible for timely replenishments and relieving healthcare providers of inventory burdens. This 

hybrid model can become more responsive by adapting dynamically to new conditions and with preference for 

sustainability in waste minimization and transportation routing to reduce environmental impacts. This is a case of 

robust optimization, making sure that the supply chain runs on the worst case, always preserving the continuity 

for availability of critical medical supplies. While faced with system complexity and integration costs, the 

combined approach increases the efficiency, reliability, and sustainability of the healthcare supply chain to 

reinforce better patient care and system resilience during emergencies. 

Abbasi, B., et al (2020). A cutting edge approach of using machine learning (ML) to predict solutions 

for large scale optimization problems in the blood supply chain management to improve efficiency and 

nimbleness. Blood product supply chain is inherently complex, including dynamic demand, perishable products, 

and importance of timely delivery. Using ML models trained on real time and historic data, we can predict such 

solutions for donor scheduling, inventory management and distribution route management on a supply chain. 

Predictive analytics can be used to ML to forecast demand patterns, anticipate potential shortages and allocate 

resources as effectively as possible — even in emergency scenarios. These models can work with huge datasets 

and factor in demographics of population, seasonal factors, some transportation impediments etc.  ML is able to 

solve such complex problems instantaneously (or near instantly), at a much lower computational complexity, also 

resulting in resources being saved. While issues like data quality, model effectiveness, and implementation 

expenses exist, ML driven optimization is highly encouraging. This approach to blood supply chain management 

reduces waste, lifts service levels, and improves decision making under uncertainty providing the most critical 

resources when and where they are needed most. This then sets the way for the development of a smarter, more 

resilient healthcare system. 

 Abouee‐Mehrizi, H., et al (2022). The potential for transformative changes in how healthcare systems 

utilize the blood supply chain is also possible with a smart platform for blood bank data management that uses 

machine learning to predict demand. Blood inventory management is an important, yet highly difficult, function 

to perform, characterized by perishable blood products and unpredictable demand. Using a platform that is based 

on machine learning, historical data, donor patterns, seasonal trends, healthcare demands and so on can be 

analyzed to provide a precise forecast of the requirements of blood from one region to the other. This capability 

enables the prediction of shortages in addition to wastage due to overstocking — an efficient utilization of 

resources. They could also automate the donor outreach, identifying the ideal times to run the drives and predicting 

potential shortages in their donating systems well in advance.  Using real time data integration at several blood 

banks, unites a network to track availability, distribution, demand alignment. A challenge lies in securing data, 

getting rid of historical data biases, and convincing blood bank employees to adopt the tool. However, this 

technology can greatly improve the decision making, streamline the operations of the supply chain, and improve 

blood delivery reliability in both emergency and routine situations, as long as there is proper design and 

implementation. The smart blood bank management platform not only optimizes the utilization of resources but 

provides a backup to better patient care and life saving interventions through the more resilient and responsive 

supply chain. 

 

III. Methodology 

In hospitals, blood supply chain optimization necessitates data driven strategies to address intrinsic 

complexities in blood supply chain, for example, volatile demand, perishable inventory and logistical challenges. 

Analyzing historical data, analyzing seasonal trends and demographic factors, forecasting blood demand is a thing 

that is done by predictive analytics and it plays a vital role. Access to blood traceability provides hospitals and 

blood banks the ability to anticipate shortages, plan procurement proactively, and prevent the wastage caused by 

overstocking. Additionally, inventory management exploits algorithms to follow blood product lifecycles, 

optimize its stock level, and give a higher priority to the usage of blood products nearing to expiry. These systems 

make available supplies meet real time demand and also minimize spoilage risk. 
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The image of the proposed blood supply chain network initially considers donors, blood collection 

facilities, storage facilities, hospitals, and real-time inventory management using capacitated vehicles. Blood is 

donated by donors to collection facilities, followed by transport with vehicles to blood storage centers for storage. 

They collect and distribute blood as it is needed to hospitals. Optimized transportation efficiency is achieved with 

capacitated vehicles and real time blood stock and logistics tracking can be done using an integrated inventory 

system. This system reduces the waste and maximizes the collaboration of the stakeholders in order to decrease 

the cost of a given healthcare organization and improve the working of supply chain and in accomplishing this 

process. 

Supply chain visibility is enhanced by Real Time monitoring and tracking systems during the blood 

product collection, storage and distribution phases, which providing stakeholders the ability to track blood 

products throughout this process. Temperature fluctuations and delays can be alerted through these systems thus 

complying with quality standards and reducing loss. Technology powered collaborative frameworks like 

blockchain or cloud-based platforms enable smooth coordination among blood banks, hospitals and logistic 

provider. Compared to more traditional communication platforms, these platforms facilitate transparent 

communication, efficient resource allocation and quick response to emergencies, e.g. re-distribution of surplus 

stock when there are shortages of the same in different regions. All combined, these strategies establish a resilient, 

efficient blood chain that can reliably meet patient needs, minimize wastage, and support cost effective operations. 

Integrating data driven tools transforms the blood supply chain from being proactive on the one end and adaptive 

on the other, which improves healthcare outcomes and better resource management. 

 

IV. Mathematical Model 

The below mentioned notations and assumptions are used to develop the mathematical model 

Notations: 

a. 𝐼(𝑡) is the on hand inventory at any time 𝑡 
b. The demand rate function 𝐷(𝑡) is assumed to be a function of time in a polynomial form: 𝐷(𝑡) =

𝛽𝑡𝛾−1 with 𝛾 > 1 for increasing demand, 𝛾 < 1 for decreasing demand and 𝛾 = 1 for constant demand 

and 𝛽 is a positive constant. 

c. 𝐷𝑓̃ is the triangular fuzzy demand rate 

d. 𝐷𝑐̃  is the cloud fuzzy demand rate 

e. 𝜃(𝜉) is the preservation technology cost dependent Deterioration rate which is defined as 𝜃(𝜉) =

𝜃0𝑒
−𝛿𝜉  where 0 < 𝜃0, 𝛿 < 1, 𝜃0 = initial deterioration rate. 

f. 𝑇 is the total cycle time 

g. 𝐴 is the Set up cost per cycle 

h. ℎ𝑟 is the Inventory holding cost per unit per unit time 
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i. 𝑑𝑟 is the Deterioration cost per unit per unit time 

j. 𝑝 is the purchasing cost per unit 

k. 𝑠 is the Shortage cost per unit per unit time 

l. 𝑄 is the initial inventory level 

m. 𝑇𝐼𝐶 is the total cost per unit time 

n. 𝑇𝐼𝐶𝑓̃ is the fuzzy total cost per unit time 

o. 𝑇𝐼𝐶𝑐̃  is the cloud fuzzy total profit per unit time 

Assumptions: 

a. Demand rate is uncertain in character. 

b. Single deteriorating type of product is considered over a finite planning horizon 𝑇. 

c. The deterioration rate 𝜃 is depending on the preservation technology investment cost 𝜉. 

d. There is no repair or replacement of deteriorated products during cycle time 𝑇. 

e. Shortages are allowed and completely backlogged. 

f. Lead time is zero. 

 

Crisp mathematical Model 

The initial inventory level is 𝑄 at time 𝑡 = 0. The inventory level gradually depletes to zero at time 𝑡 = 𝑡1 due 

to demand and deterioration. Now shortages occur and accumulate to the level 𝐼𝑠 at time 𝑡 = 𝑇. Then the cycle 

repeats thereafter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Graphical representation of the inventory system 

 

The mathematical formulation of the model is given by 
𝑑𝐼(𝑡)

𝑑𝑡
+ 𝜃(𝜉)𝐼(𝑡) = −𝛽𝑡𝛾−1,   0 ≤ 𝑡 ≤ 𝑡1                                                                                      (1) 

𝑑𝐼(𝑡)

𝑑𝑡
= −𝛽𝑡𝛾−1,                         𝑡1 ≤ 𝑡 ≤ 𝑇                                                                                     (2) 

With the boundary conditions: 

𝐼(0) = 𝑄,   𝐼(𝑡1) = 0, 𝐼(𝑇) = −𝐼𝑠                                                                                                 (3) 

Solving (1) and (2) we get 

𝐼(𝑡) = 𝛽 {
1

𝛾
(𝑡1

𝛾 − 𝑡𝛾) +
𝜃(𝜉)

(𝛾+1)
(𝑡1

𝛾+1 − 𝑡𝛾+1)} 𝑒−𝜃(𝜉)𝑡                                                               (4) 

𝐼(𝑡) =
𝛽

𝛾
{𝑡1

𝛾 − 𝑡𝛾}                                                                                                                        (5) 

Now from (4) and the boundary condition 𝐼(0) = 𝑄 we get  

𝑄 = 𝛽 {
1

𝛾
𝑡1
𝛾 +

𝜃(𝜉)

(𝛾+1)
𝑡1
𝛾+1}                                                                                                           (6) 

 Inventory 

Time  
0 

t1 

Q 

T 
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Set up cost in the cycle 𝑇 is   

𝑆𝑢𝑐 = 𝐴                                                                                                                                        (7) 
Purchasing cost in the cycle T is 

𝑃𝑐 = 𝑄. 𝑝 = 𝑝𝛽 {
1

𝛾
𝑡1
𝛾 +

𝜃(𝜉)

(𝛾+1)
𝑡1
𝛾+1}                                                                                            (8) 

Holding cost in the cycle 𝑇 is  

𝐻𝑐 = ℎ𝑟 ∫ 𝐼(𝑡)𝑑𝑡
𝑡1
0

   

    = 𝛽ℎ𝑟 {
1

(𝛾+1)
𝑡1
𝛾+1 +

𝜃(𝜉)

2(𝛾+2)
𝑡1
𝛾+2}                                                                                           (9) 

(Neglecting higher powers of (𝜉) ) 
Deterioration cost in the cycle 𝑇 is 

𝐷𝑐 = 𝑑𝑟 ∫ 𝜃(𝜉)𝐼(𝑡)𝑑𝑡
𝑡1
0

  

     = 𝛽𝑑𝑟𝜃(𝜉) {
1

(𝛾+1)
𝑡1
𝛾+1 +

𝜃(𝜉)

2(𝛾+2)
𝑡1
𝛾+2}                                                                                (10)                   

Preservation technology cost in the cycle 𝑇 is  

𝑃𝑟𝑐 = 𝜉𝑡1                                                                                                                                     (11) 

Shortage cost in the production cycle 𝑇 is  

𝑆𝑐 = 𝑠 ∫ {−𝐼(𝑡)} 𝑑𝑡
𝑇

𝑡1
  

     = 𝑠
𝛽

𝛾
{𝑡1

𝛾𝑇 −
1

(𝛾+1)
𝑇𝛾+1 −

𝛾

(𝛾+1)
𝑡1
𝛾+1}                                                                                (12) 

 Therefore, the total inventory cost of the system is  

𝑇𝐼𝐶(𝑡1, 𝜉) = 𝑆𝑢𝑐 + 𝑃𝑐 + 𝐻𝑐 + 𝐷𝑐 + 𝑃𝑟𝑐 + 𝑆𝑐   

Hence from the relations (7) - (12) we get, 

𝑇𝐼𝐶(𝑡1, 𝜉) = 𝐴 + 𝑝𝛽 {
1

𝛾
𝑡1
𝛾 +

𝜃(𝜉)

(𝛾+1)
𝑡1
𝛾+1} + 𝛽(ℎ𝑟 + 𝑑𝑟𝜃(𝜉)) {

1

(𝛾+1)
𝑡1
𝛾+1 +

𝜃(𝜉)

2(𝛾+2)
𝑡1
𝛾+2} + 𝜉𝑡1 +

𝑠𝛽

𝛾
{𝑡1

𝛾𝑇 −
1

(𝛾+1)
𝑇𝛾+1 −

𝛾

(𝛾+1)
𝑡1
𝛾+1}                                                        (13) 

(Where 𝜃(𝜉) = 𝜃0𝑒
−𝛿𝜉) 

Then the problem is described as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑇𝐼𝐶(𝑡1, 𝜉), 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑡1 > 0, 0 ≤ 𝜉 ≤ 𝜉̅  
Our aim is to obtain the minimum total inventory cost 𝑇𝐼𝐶(𝑡1, 𝜉) with respect to the time interval 𝑡1 and 

the cost of preservation technology 𝜉. The objective function is non-linear and continuous function of two 

variables. The necessary condition for existence of the solution is 
𝜕𝑇𝐼𝐶

𝜕𝑡1
= 0 and 

𝜕𝑇𝐼𝐶

𝜕𝜉
= 0 provided it satisfies 

|
|

𝜕2𝑇𝐼𝐶

𝜕𝑡1
2

𝜕2𝑇𝐼𝐶

𝜕𝑡1𝜕𝜉

𝜕2𝑇𝐼𝐶

𝜕𝜉𝜕𝑡1

𝜕2𝑇𝐼𝐶

𝜕𝜉2

|
| > 0 

Fuzzy Mathematical Model 

In real-life scenario, it is observed that the demand rate cannot be predicted precisely. Hence, to formulate the 

fuzzy model we assumed demand rate as fuzzy number.  

Let us consider the demand parameter 𝛽 as triangular fuzzy number 𝛽𝑓̃ as 𝛽𝑓̃ = 〈𝛽1, 𝛽2, 𝛽3〉 

Hence the total fuzzy profit function reduces to (fuzzifying (13)) 

𝑇𝐼𝐶𝑓̃(𝑡1, 𝜉) = 𝐴 + 𝑝𝛽𝑓̃ {
1

𝛾
𝑡1
𝛾 +

𝜃(𝜉)

(𝛾+1)
𝑡1
𝛾+1} + 𝛽𝑓̃(ℎ𝑟 + 𝑑𝑟𝜃(𝜉)) {

1

(𝛾+1)
𝑡1
𝛾+1 +

𝜃(𝜉)

2(𝛾+2)
𝑡1
𝛾+2} + 𝜉𝑡1 +

𝑠𝛽𝑓̃

𝛾
{𝑡1

𝛾𝑇 −
1

(𝛾+1)
𝑇𝛾+1 −

𝛾

(𝛾+1)
𝑡1
𝛾+1}                                                       (14) 

Hence, the membership function for the fuzzy cost under triangular fuzzy number is  

𝜇(𝑇𝐼𝐶) =

{
 

 
𝑇𝐼𝐶−𝑇𝐼𝐶1

𝑇𝐼𝐶2−𝑇𝐼𝐶1
, 𝑇𝐼𝐶1 ≤ 𝑇𝐼𝐶 ≤ 𝑇𝐼𝐶2

𝑇𝐼𝐶3−𝑇𝐼𝐶

𝑇𝐼𝐶3−𝑇𝐼𝐶2
, 𝑇𝐼𝐶2 ≤ 𝑇𝐼𝐶 ≤ 𝑇𝐼𝐶3

0,           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                (15) 

Where  𝑇𝐼𝐶𝑖  , 𝑖 = 1, 2, 3 can be obtained by replacing 𝛽𝑓̃ with 𝛽𝑖 , 𝑖 = 1, 2, 3 in equ. (14) and expressed as 

𝑇𝐼𝐶𝑖(𝑡1, 𝜉) = 𝐴 + 𝑝𝛽𝑖 {
1

𝛾
𝑡1
𝛾 +

𝜃(𝜉)

(𝛾+1)
𝑡1
𝛾+1} + 𝛽𝑖(ℎ𝑟 + 𝑑𝑟𝜃(𝜉)) {

1

(𝛾+1)
𝑡1
𝛾+1 +

𝜃(𝜉)

2(𝛾+2)
𝑡1
𝛾+2} + 𝜉𝑡1 +

𝑠𝛽𝑖

𝛾
{𝑡1

𝛾𝑇 −
1

(𝛾+1)
𝑇𝛾+1 −

𝛾

(𝛾+1)
𝑡1
𝛾+1}                                                        (16) 
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Now, left 𝛼- cut of  𝜇(𝑇𝐼𝐶) is 𝐿(𝛼) = 𝑇𝐼𝐶1 + 𝛼(𝑇𝐼𝐶2 − 𝑇𝐼𝐶1)  
and right 𝛼- cut of  𝜇(𝑇𝐼𝐶) is 𝑅(𝛼) = 𝑇𝐼𝐶3 − 𝛼(𝑇𝐼𝐶3 − 𝑇𝐼𝐶2) 
By using the Yager’s ranking index method for defuzzification, the defuzzified value of the fuzzy objective 

function is  

𝐼(𝑇𝐼𝐶𝑓̃) =
1

2
∫ {𝐿(𝛼) + 𝑅(𝛼)}𝑑𝛼
1

0
  

= 𝐴 + 𝑝
(𝛽1+2𝛽2+𝛽3)

4
{
1

𝛾
𝑡1
𝛾 +

𝜃(𝜉)

(𝛾+1)
𝑡1
𝛾+1} +

(𝛽1+2𝛽2+𝛽3)

4
(ℎ𝑟 + 𝑑𝑟𝜃(𝜉)) {

1

(𝛾+1)
𝑡1
𝛾+1 +

𝜃(𝜉)

2(𝛾+2)
𝑡1
𝛾+2} +

𝜉𝑡1 +
𝑠

𝛾

(𝛽1+2𝛽2+𝛽3)

4
{𝑡1

𝛾𝑇 −
1

(𝛾+1)
𝑇𝛾+1 −

𝛾

(𝛾+1)
𝑡1
𝛾+1}                (17) 

Then the objective function under fuzzy model is described as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑇𝐼𝐶𝑓̃(𝑡1, 𝜉), 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     𝑡1 > 0, 0 ≤ 𝜉 ≤ 𝜉 ̅

 

Cloud Fuzzy Model 

To formulate the cloud fuzzy model, let us assume the demand parameter 𝛽 as a cloud triangular fuzzy number. 

𝛽𝑐̃ = 〈𝑏 (1 −
𝜌

1+𝑡
) , 𝑏, 𝑏 (1 +

𝜎

1+𝑡
)〉 for 0 < 𝜌, 𝜎 < 1, 𝑡 > 0 

The total cloud fuzzy cost function is given by 

𝑇𝐼𝐶𝑐̃(𝑡1, 𝜉) = 𝐴 + 𝑝𝛽𝑐̃ {
1

𝛾
𝑡1
𝛾 +

𝜃(𝜉)

(𝛾+1)
𝑡1
𝛾+1} + 𝛽𝑐̃(ℎ𝑟 + 𝑑𝑟𝜃(𝜉)) {

1

(𝛾+1)
𝑡1
𝛾+1 +

𝜃(𝜉)

2(𝛾+2)
𝑡1
𝛾+2} + 𝜉𝑡1 +

𝑠𝛽𝑐̃

𝛾
{𝑡1

𝛾𝑇 −
1

(𝛾+1)
𝑇𝛾+1 −

𝛾

(𝛾+1)
𝑡1
𝛾+1}                                                       (18) 

Again the membership function for the fuzzy objective function under cloud triangular fuzzy number is 

𝜔(𝑇𝐼𝐶, 𝑡) =

{
 

 
𝑇𝐼𝐶−𝑇𝐼𝐶1

𝑇𝐼𝐶2−𝑇𝐼𝐶1
, 𝑇𝐼𝐶1 ≤ 𝑇𝐼𝐶 ≤ 𝑇𝐼𝐶2

𝑇𝐼𝐶3−𝑇𝐼𝐶

𝑇𝐼𝐶3−𝑇𝐼𝐶2
, 𝑇𝐼𝐶2 ≤ 𝑇𝐼𝐶 ≤ 𝑇𝐼𝐶3

0,           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                            (19) 

Where  𝑇𝐼𝐶𝑖  , 𝑖 = 1, 2, 3 can be obtained by replacing 𝛽𝑐̃  with 𝑏 (1 −
𝜌

1+𝑡
) , 𝑏, 𝑏 (1 +

𝜎

1+𝑡
) in equation  (18) and 

expressed as 

𝑇𝐼𝐶1(𝑡1, 𝜉) = 𝐴 + 𝑝 𝑏 (1 −
𝜌

1+𝑡
) {

1

𝛾
𝑡1
𝛾 +

𝜃(𝜉)

(𝛾+1)
𝑡1
𝛾+1} +  𝑏 (1 −

𝜌

1+𝑡
) (ℎ𝑟 + 𝑑𝑟𝜃(𝜉)) {

1

(𝛾+1)
𝑡1
𝛾+1 +

𝜃(𝜉)

2(𝛾+2)
𝑡1
𝛾+2} + 𝜉𝑡1 +

𝑠

𝛾
 𝑏 (1 −

𝜌

1+𝑡
) {𝑡1

𝛾𝑇 −
1

(𝛾+1)
𝑇𝛾+1 −

𝛾

(𝛾+1)
𝑡1
𝛾+1}                                    (20) 

𝑇𝐼𝐶2(𝑡1, 𝜉) = 𝐴 + 𝑝𝑏 {
1

𝛾
𝑡1
𝛾 +

𝜃(𝜉)

(𝛾+1)
𝑡1
𝛾+1} + 𝑏(ℎ𝑟 + 𝑑𝑟𝜃(𝜉)) {

1

(𝛾+1)
𝑡1
𝛾+1 +

𝜃(𝜉)

2(𝛾+2)
𝑡1
𝛾+2} + 𝜉𝑡1 +

𝑠𝑏

𝛾
{𝑡1

𝛾𝑇 −
1

(𝛾+1)
𝑇𝛾+1 −

𝛾

(𝛾+1)
𝑡1
𝛾+1}                                                                                (21) 

And 

𝑇𝐼𝐶3(𝑡1, 𝜉) = 𝐴 + 𝑝𝑏 (1 +
𝜎

1+𝑡
) {

1

𝛾
𝑡1
𝛾 +

𝜃(𝜉)

(𝛾+1)
𝑡1
𝛾+1} + 𝑏 (1 +

𝜎

1+𝑡
) (ℎ𝑟 + 𝑑𝑟𝜃(𝜉)) {

1

(𝛾+1)
𝑡1
𝛾+1 +

𝜃(𝜉)

2(𝛾+2)
𝑡1
𝛾+2} + 𝜉𝑡1 +

𝑠

𝛾
𝑏 (1 +

𝜎

1+𝑡
) {𝑡1

𝛾𝑇 −
1

(𝛾+1)
𝑇𝛾+1 −

𝛾

(𝛾+1)
𝑡1
𝛾+1}                                     (22) 

Now, left 𝛼- cut of  𝜔(𝑇𝐼𝐶, 𝑡) is 𝐿(𝛼, 𝑡) = 𝑇𝐼𝐶1 + 𝛼(𝑇𝐼𝐶2 − 𝑇𝐼𝐶1)  
and right 𝛼- cut of  𝜔(𝑇𝐼𝐶, 𝑡) is 𝑅(𝛼, 𝑡) = 𝑇𝐼𝐶3 − 𝛼(𝑇𝐼𝐶3 − 𝑇𝐼𝐶2) 
By using the extension of Yager’s ranking index method for defuzzification, the defuzzified value of the cloud 

fuzzy objective function is 

𝐼(𝑇𝐼𝐶𝑐̃) =
1

2𝑇
 ∫ ∫ {𝐿(𝛼, 𝑡) + 𝑅(𝛼, 𝑡)}𝑑𝑡

𝑡=𝑇

𝑡=0

𝑑𝛼

𝛼=1

𝛼=0

 

= 𝐴 + 𝑝𝑏 {1 +
(𝜎−𝜌)

4

log(1+𝑇)

𝑇
} {

1

𝛾
𝑡1
𝛾 +

𝜃(𝜉)

(𝛾+1)
𝑡1
𝛾+1} + 𝑏 {1 +

(𝜎−𝜌)

4

log(1+𝑇)

𝑇
} (ℎ𝑟 +

𝑑𝑟𝜃(𝜉)) {
1

(𝛾+1)
𝑡1
𝛾+1 +

𝜃(𝜉)

2(𝛾+2)
𝑡1
𝛾+2} + 𝜉𝑡1 +

𝑠

𝛾
𝑏 {1 +

(𝜎−𝜌)

4

log(1+𝑇)

𝑇
} {𝑡1

𝛾𝑇 −
1

(𝛾+1)
𝑇𝛾+1 −

𝛾

(𝛾+1)
𝑡1
𝛾+1}                                                                                              (23) 

Then the objective function under cloud fuzzy model is described as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒    𝑇𝐼𝐶𝑐̃(𝑡1, 𝜉), 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑡1 > 0, 0 ≤ 𝜉 ≤ 𝜉 ̅
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V. Numerical Analysis 

In this Section, we have calculated optimal time interval length 𝑡1
∗, and cost of preservation technology 𝜉∗  and 

the minimum total cost 𝑇𝐼𝐶∗ for Crisp model, 𝑇𝐼𝐶𝑓
∗̃ for fuzzy model and 𝑇𝐼𝐶𝑐

∗̃  for Cloud fuzzy model over 

cycle time 𝑇 for given values of other parameters by considering example. 

 

Example: 

The following numerical values of the parameters have been considered in appropriate units to evaluate the 

models 

For Crisp model, 𝐴 = 100, 𝛽 = 5, 𝛾 = 0.8, 𝜃0 = 0.2, 𝛿 = 0.5, ℎ𝑟 = 2, 𝑑𝑟 = 5, 𝑝 = 15, 𝑠 = 13, 𝑇 = 5 in 

appropriate units. 

For fuzzy model, 𝛽𝑓̃ = 〈𝛽1, 𝛽2, 𝛽3〉 = 〈3.5,5,6.5 〉 and keep other parameters as in crisp model. 

For cloud fuzzy model, 𝜌 = 0.12, 𝜎 = 0.65, 𝑏 = 5  and keep other parameters as in crisp model. 

 

Table 1. Optimal solutions under different environments 
Environment  𝑡1

∗ 𝜉∗ Optimal Cost 

Crisp  3.28 1.8 𝑇𝐼𝐶∗ =1287.35 

Fuzzy  3.36 2.1 𝑇𝐼𝐶𝑓
∗̃ = 1103.71 

Cloud Fuzzy  3.52 2.4 𝑇𝐼𝐶𝑐
∗̃  =1062.39 

 

• From Table 1, we observe that Cloud Fuzzy model is the most profitable policy compared to the other 

policy. In this model we get the minimum cost of the inventory system is 1062.39 along with the time is 

3.52 and the preservation technology investment cost is 2.4. 

• The degree of fuzziness under a fuzzy environment can be calculated using the formula 𝐷𝑓 =
𝑈−𝐿

2𝑀
, where 

𝑈 and 𝐿 are upper bound and lower bound of triangular fuzzy number, respectively, and 𝑀 =
3(𝑚𝑒𝑑𝑖𝑎𝑛) − 2(𝑚𝑒𝑎𝑛) is the mode of the triangular fuzzy number. The degree of fuzziness under cloud 

fuzzy environment known as the cloud index can be obtained using the formula 𝐼𝑐 =
log(1+𝑇)

𝑇
. We have 

a fuzzy demand parameter 𝛽𝑓̃ = 〈3.5,5,6.5 〉. Therefore, upper bound is 𝑈 = 6.5 and lower bound is 𝐿 =

3.5. The median of 𝛽 is 5, and mean is 5; therefore, mode 𝑀 = 5 and degree of fuzziness 𝐷𝑓 = 0.3. Since 

the cycle time under the cloud fuzzy environment is 𝑇 = 5 and cloud index 𝐼𝑐 = 0.08, which proves that 

ambiguity associated with cloud fuzzy environment is less than in the fuzzy environment. 

 

VI. Sensitivity Analysis 

Sensitivity analysis under different environments is conducted by changing one of , 𝜃0 , 𝛿, 𝐴 , ℎ𝑟 , 𝑑𝑟 , 𝑝, 𝑠  and 

keeping others parameters fixed. 

 

Table 2: Impact of 𝜽𝟎  on optimal cost under different environments 
Change value Crisp Model Fuzzy Model Cloud Fuzzy Model 

 𝑡1
∗ 𝜉∗ 𝑇𝐼𝐶∗ 𝑡1

∗ 𝜉∗ 𝑇𝐼𝐶𝑓
∗̃  𝑡1

∗ 𝜉∗ 𝑇𝐼𝐶𝑐
∗̃   

 
𝜃0 

0.30 3.1 1.64 1321.57 3.23 1.82 1246.21 3.39 2.10 1173.26 

0.25 3.19 1.72 1292.32 3.31 2.04 1183.05 3.46 2.26 1119.71 

0.15 3.32 1.89 1259.15 3.39 2.22 1056.31 3.55 2.49 1010.23 

0.10 3.39 1.96 1207.26 3.45 2.29 1002.53 3.63 2.61 963.57 
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Fig. 2 Impact of 𝜽𝟎 on Total inventory Cost under different environments 

 
 

Table 3: Impact of 𝜹 on optimal cost under different environments 
Change value Crisp Model Fuzzy Model Cloud Fuzzy Model 

 𝑡1
∗ 𝜉∗ 𝑇𝐼𝐶∗ 𝑡1

∗ 𝜉∗ 𝑇𝐼𝐶𝑓
∗̃  𝑡1

∗ 𝜉∗ 𝑇𝐼𝐶𝑐
∗̃   

 
𝛿 

0.7 3.38 1.98 1208.42 3.46 2.3 1047.25 3.64 2.62 985.47 

0.6 3.31 1.87 1269.76 3.41 2.25 1139.22 3.56 2.50 1059.36 

0.4 3.18 1.73 1297.47 3.32 2.14 1194.65 3.47 2.29 1120.39 

0.3 3.09 1.61 1345.92 3.25 1.95 1216.26 3.41 2.06 1194.14 

 

Fig. 3 Impact of 𝜹 on Total inventory Cost under different environments 

 
 

Table 4: Impact of 𝑨 on optimal cost under different environments 
Change value Crisp Model Fuzzy Model Cloud Fuzzy Model 

 𝑡1
∗ 𝜉∗ 𝑇𝐼𝐶∗ 𝑡1

∗ 𝜉∗ 𝑇𝐼𝐶𝑓
∗̃  𝑡1

∗ 𝜉∗ 𝑇𝐼𝐶𝑐
∗̃   

 
𝐴 

150 3.28 1.95 1310.21 3.36 2.22 1153.50 3.52 2.52 1126.83 

125 3.28 1.88 1298.53 3.36 2.15 1126.33 3.52 2.47 1089.65 

75 3.28 1.69 1263.45 3.36 1.93 1067.36 3.52 2.35 1027.76 

50 3.28 1.51 1236.76 3.36 1.87 1027.97 3.52 2.29 982.23 
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Fig. 4 Impact of 𝑨 on Total inventory Cost under different environments 

 

 
 

Table 5: Impact of 𝒉𝒓 on optimal cost under different environments 
Change value Crisp Model Fuzzy Model Cloud Fuzzy Model 

 𝑡1
∗ 𝜉∗ 𝑇𝐼𝐶∗ 𝑡1

∗ 𝜉∗ 𝑇𝐼𝐶𝑓
∗̃  𝑡1

∗ 𝜉∗ 𝑇𝐼𝐶𝑐
∗̃   

 
ℎ𝑟 

3 3.23 1.94 1334.26 3.31 2.23 1191.62 3.45 2.53 1136.37 

2.5 3.26 1.87 1296.87 3.33 2.16 1154.41 3.49 2.48 1102.46 

1.5 3.29 1.68 1258.27 3.38 1.94 1085.87 3.55 2.36 1022.39 

1 3.31 1.52 1247.60 3.41 1.88 1032.31 3.58 2.31 996.81 

 

Fig. 5 Impact of 𝒉𝒓 on Total inventory Cost under different environments 

 
 

Table 6: Impact of 𝒅𝒓 on optimal cost under different environments 
Change value Crisp Model Fuzzy Model Cloud Fuzzy Model 

 𝑡1
∗ 𝜉∗ 𝑇𝐼𝐶∗ 𝑡1

∗ 𝜉∗ 𝑇𝐼𝐶𝑓
∗̃  𝑡1

∗ 𝜉∗ 𝑇𝐼𝐶𝑐
∗̃   

 
𝑑𝑟 

7 3.25 1.93 1356.29 3.32 2.24 1196.54 3.46 2.55 1148.32 

6 3.27 1.86 1306.31 3.34 2.17 1173.87 3.48 2.49 1119.71 

4 3.29 1.67 1276.11 3.39 1.95 1092.46 3.54 2.37 1047.26 

3 3.33 1.53 1256.74 3.42 1.89 1053.19 3.57 2.33 1024.47 
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Fig. 6 Impact of 𝒅𝒓 on Total inventory Cost under different environments 

 
 

Table 7: Impact of 𝒑 on optimal cost under different environments 
Change value Crisp Model Fuzzy Model Cloud Fuzzy Model 

 𝑡1
∗ 𝜉∗ 𝑇𝐼𝐶∗ 𝑡1

∗ 𝜉∗ 𝑇𝐼𝐶𝑓
∗̃  𝑡1

∗ 𝜉∗ 𝑇𝐼𝐶𝑐
∗̃   

 
𝑝 

19 3.22 1.39 1331.98 3.31 1. 68 1213.09 3.45 2.01 1148.47 

17 3.27 1.45 1293.23 3.33 1.72 1155.27 3.49 2.18 1106.30 

13 3.31 1.79 1257.58 3.38 2.16 1096.75 3.55 2.49 1039.35 

11 3.38 1.91 1246.27 3.41 2.31 1031.27 3.58 2.57 979.19 

 

Fig. 7 Impact of 𝒑 on Total inventory Cost under different environments 

 
 

Table 8: Impact of 𝒔 on optimal cost under different environments 
Change value Crisp Model Fuzzy Model Cloud Fuzzy Model 

 𝑡1
∗ 𝜉∗ 𝑇𝐼𝐶∗ 𝑡1

∗ 𝜉∗ 𝑇𝐼𝐶𝑓
∗̃  𝑡1

∗ 𝜉∗ 𝑇𝐼𝐶𝑐
∗̃   

 
𝑠 

15 3.32 1.95 1354.29 3.42 2.45 1221.19 3.56 2.78 1172.02 

14 3.29 1.88 1313.23 3.39 2.27 1161.67 3.48 2.57 1106.57 

12 3.24 1.37 1248.88 3.32 1.70 1083.89 3.46 2.01 1027.19 

11 3.22 1.11 1211.36 3.29 1.59 1028.27 3.42 1.78 981.43 
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Fig. 8 Impact of 𝒔 on Total inventory Cost under different environments 

 

 
 

VII. Observations 

It is observed from the tables (2) – (8) that: 

i. With the increase (or decrease) of 𝜃0 , 𝐴 , ℎ𝑟 , 𝑑𝑟 , 𝑝, 𝑠, the total inventory cost under different environments 

𝑇𝐼𝐶, 𝑇𝐼𝐶𝑓  𝑎𝑛𝑑 𝑇𝐼𝐶𝑐 increases (or decreases) monotonically. Further, 𝑇𝐼𝐶, 𝑇𝐼𝐶𝑓  𝑎𝑛𝑑 𝑇𝐼𝐶𝑐 are highly 

sensitive towards the parameters 𝜃0, ℎ𝑟 , 𝑑𝑟 , 𝑝, 𝑠 but moderately sensitive towards 𝐴.  

ii. For different environments, with the decrease (or increase) of  𝛿, the total inventory cost 

𝑇𝐼𝐶, 𝑇𝐼𝐶𝑓  𝑎𝑛𝑑 𝑇𝐼𝐶𝑐 increases (or decreases) monotonically. Further, 𝑇𝐼𝐶, 𝑇𝐼𝐶𝑓  𝑎𝑛𝑑 𝑇𝐼𝐶𝑐  are 

moderately sensitive to the parameter  𝛿. 

iii. When parameters 𝛿 , 𝐴 , ℎ𝑟 , 𝑑𝑟 , 𝑝, 𝑠  increase, preservation technology investment cost 𝜉 increases (for 

the three models). With the decreasing values of the parameter 𝜃0, preservation technology investment 

cost 𝜉 increases (for the three models). The preservation technology investment cost 𝜉 is moderately 

sensitive to 𝜃0, 𝛿 , 𝐴 , ℎ𝑟 , 𝑑𝑟 , 𝑝, 𝑠.       
iv. Following the increase of parameters 𝛿, 𝑠, the timew period 𝑡1 increases (for the three models). However, 

when the parameters 𝜃0, ℎ𝑟 , 𝑑𝑟 , 𝑝 decrease, the time period 𝑡1 increases (for the three models). 

Particularly the production period 𝑡1 changes nothing when the parameter  𝐴 increases or decreases (for 

all models). 

 

VIII. Conclusion 

The proposed model offers a realistic and adaptable framework for managing blood inventory systems, 

addressing both the perishable nature of blood and the uncertainty in its demand. By employing fuzzy and cloud 

fuzzy environments, the model captures the ambiguity inherent in medical supply chains more effectively than 

traditional crisp models. The integration of preservation technology cost as a control variable introduces a practical 

trade-off between operational cost and blood wastage, highlighting the importance of investing in infrastructure 

to extend shelf life. The non-linear, two-variable optimization provides a flexible yet robust structure for 

identifying the cost-optimal cycle time and preservation investment. The use of Yager's ranking index and α-cut 

methods for defuzzification ensures that decision-makers are supported with actionable insights under uncertainty. 

In application, this model can greatly benefit blood banks, hospitals, and healthcare policymakers aiming to reduce 

costs, minimize blood wastage, and ensure timely availability of blood products. Future extensions could explore 

multi-item scenarios, different blood types, and the impact of random supply disruptions to enhance the model's 

utility in real-world scenarios. 
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IX. Future Work 

In turn, future research on data driven strategies of efficient blood supply chain management in hospitals 

will cover several crucial issues aimed to achieve greater efficiency and resilience. Among them, the introduction 

of advance machine learning algorithms and Artificial Intelligence (AI) to assist in improving the accuracy of 

prediction of demand and optimizing the logistics are one key area. These technologies can process complex, real-

time data to predict demand patterns, detect anomalies and make adaptive strategies recommendations in 

emergency situations. 

Another important direction is development and setup of blockchain based frameworks for supply chain 

transparency and traceability. With blockchain, data security is improved and trust among stakeholders is 

established, improving collaboration and accountability between stakeholders increase. 

Future work should examine the use of the Internet of Things (IoT) to monitor conditions during blood 

storage and transportation. Sensors that are at IoT can offer real time updates on temperature, location and other 

key parameters providing guarantees that safety standards are being met and that wastage is being minimized. 

Another promising area is for the implementation of decision-support systems for hospitals and blood 

banks. Actionable insights, arising out of these systems can be used to manage inventory, plan logistics, and 

allocation of resources for better supply chain efficiency. 

Studies can be done looking at the socio-economic impact for those taking up data driven strategies in 

the low resource part of the world and creating a level playing field when it comes to accessing the most advanced 

solutions everywhere. But his directions will mean innovation and a more resilient healthcare system. 
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