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Abstract

Blood supply chain management is important and effective in providing timely availability of blood and blood
products there is an emergency and critical healthcare delivery. The problem of hospitals is that they have to deal
with demand fluctuations, the perishability of blood products and logistical inefficiencies which cause shortages,
wastage or delays and, inevitably, affect patient outcomes. The present study, an inventory model is developed for
managing blood supplies, which are inherently spoilable and sensitive to demand fluctuations. We have
considered a model, which accounts for time dependent and uncertain demand represented in both triangular
fuzzy and cloud fuzzy environments, which better reflect real-word uncertainties in blood utilization rates. A
deterioration rate influenced by preservation technology investment is incorporated, emphasizing the critical role
of refrigeration and storage protocols in mitigating blood wastage. The total inventory cost includes setup,
procurement, holding, deterioration, shortage, and preservation costs over a finite planning horizon. A non-linear
optimization framework is formulated to minimize the total cost by jointly determining the optimal inventory
depletion time and investment in preservation technology. The model is particularly applicable to healthcare
systems and blood banks aiming to balance cost-efficiency with life-saving service levels. Defuzzification
techniques such as Yager’s ranking index are used for decision-making under fuzzy demand scenarios, offering a
more realistic and adaptable decision-support system for the blood supply chain. The model is illustrated by a
numerical example. Sensitivity analysis is also performed.
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L Introduction
Blood supply chain management is an integral part of a healthcare system, keeping the lifesaving blood
and blood products flowing where it is needed. Hospitals struggle to optimize their management of blood products
as supply is affected with fluctuating demand, a limited shelf life and unpredictable emergencies. These
complexities frequently perplex traditional methods, leading to shortages, waste, or delays that can influence
patient results unfavorably. However, the integration of data driven strategies, to overcome these challenges is a
transformative approach in blood supply chain management. Through the use of data analytics, hospitals can better
manage inventory levels, forecast demand patterns, and refine distribution channels to ensure supplies are readily
available when needed without creating wastage.
This paper proposes a mathematical inventory model for a single deteriorating item — in this case, blood
— under uncertain, time-dependent demand. The model incorporates both triangular fuzzy and cloud fuzzy
representations of demand to manage imprecision and partial knowledge effectively. Importantly, it integrates the
impact of preservation technology investments on the deterioration rate, acknowledging the critical role of
refrigeration and controlled storage in extending blood shelf-life.
Shortages are permitted and assumed to be fully backlogged, reflecting situations where emergency
requests are delayed but not denied. The model includes the total cost associated with the system: setup cost,
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procurement cost, inventory holding cost, deterioration loss, shortage cost, and the cost of preservation
technology. The optimization problem is formulated to minimize the total inventory cost (TIC) with respect to
cycle time and preservation technology expenditure, offering valuable insights for decision-makers in blood banks
and hospital supply departments.

II. Literature Review

Nayeri, S., et al (2023). In adapting to the ever-changing paradigm of quality of care in healthcare
industry, a data driven model for sustainable and resilient supplier selection and order allocation tackles critical
hurdles in supply management in such a responsive healthcare supply chain. This kind of model integrates
sustainability criteria such as environmental, social, and economic criteria with resilience measures, to maintain
supply chain continuity in case of disruptions. The model analyzes historical data, Realtime data and predictive
analytics to evaluate the potential suppliers on their level of reliability, ability to comply towards ethical practices,
risk mitigation & environmental compliance. Further it optimizes a match of an order allocation that minimizes
carbon footprint while considering the cost efficiency, delivery time and capacity constraints. In the case of
healthcare with immediate need for timely availability of critical supplies such as medicines and medical
equipment, this approach aligns operational demand with longer term sustainability goals to improve decision
making. Through advanced technology like machine learning and blockchain, it resolves challenges like data
integration, supplier collaboration and changing regulations. The model is then utilized as a case study in the
healthcare system to show the risks can be mitigated, costs reduced, and supply chain agility enhanced during
emergencies such as pandemics.

Bhatia, A., et al (2019). A healthcare supply chain driven by big data is transformative in that it utilizes
data of massive volume to enable efficiency, resilience and responsiveness. Big data analytics helps in real time
tracking of medical supplies, predictions around demand patterns and optimization of inventory level to avoid
shortage or overstocking. Healthcare organizations can forecast disruptions (such as pandemics or natural
disasters) by analyzing historical and real time data, and proactively develop strategies to maintain supply chain
continuity. Machine learning and Al are some of the advanced techniques that allow trends to be identified and
therefore better decisions to be made, and to allocate resources cost—effectively. Big data ensures visibility of
the supply chain embarking upon all the stakeholders such as suppliers, distributors and healthcare providers.
Strategic solutions like adopting in cloud-based platforms with data governance, and ensuring good data
governance becomes a strategic imperative to address the challenge of data silos, security and integration
challenges of track and trace. Its potential lies in an ability to personalize the supply chain processes to address
the custom demand, for example, rapid delivery of crucial medicines or conformity to regional healthcare needs.
In addition to streamlining operations, a big data driven approach enables better patient care, cuts down on waste
and promotes sustainability — representing a major change of course toward smarter, more efficient healthcare
supply chain management.

Delen, D., et al (2019). By integrating geographical and spatial data, GIS-based analytics has great
transformative potential for improving management of the blood supply chain, optimizing collection, storage and
distribution. Geographic Information Systems (GIS) serve as real time map of the donor locations, blood bank
inventory and healthcare facility, and improve deployment decision through better resource allocation. Using
population density, healthcare demands and transportation networks patterns GIS can spot the right areas to start
blood collection drives and storage facilities. It allows routing of the logistics, reduce delays and fast delivery of
blood products, especially in case of emergency. GIS based systems can predict demand taking into account
seasonal fluctuations and regional health challenges and thereby reinforce proactive inventory management so
that the perishable blood products are not wasted. And they improve coordination between blood banks, hospitals
and emergency services by centralizing location specific data. With targeted investments and capacity-building
initiatives such investments can address challenges in data integration, maintaining real-time accuracy and
personnel training in GIS tools. Healthcare systems can improve the efficiency, responsiveness and sustainability
of the blood supply chain through the utilization of GIS analytics, resulting in better patient outcomes and saving
lives.

Lotfi, R., et al (2022). By leveraging the uncertainty modeling of fuzzy theory and the emerging
advanced data analytic approaches, a hybrid fuzzy and data driven robust optimization approach can improve
resilience and sustainability in healthcare supply chains. The utilization of fuzzy logic in a supply chain system
enables the handling of uncertain and ambiguous data required to manage products subject to fluctuating demand,
supply disruptions and emergency incidents of a healthcare supply chain. Data driven methods—through
integration with the existing tools—provides real time insight and predictive capabilities for inventory, supplier
management, and other times where decisions are based on forecast. This system is further enhanced through such
a vendor managed inventory (VMI) approach, whereby inventory control is handed over to suppliers, who are
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thus made responsible for timely replenishments and relieving healthcare providers of inventory burdens. This
hybrid model can become more responsive by adapting dynamically to new conditions and with preference for
sustainability in waste minimization and transportation routing to reduce environmental impacts. This is a case of
robust optimization, making sure that the supply chain runs on the worst case, always preserving the continuity
for availability of critical medical supplies. While faced with system complexity and integration costs, the
combined approach increases the efficiency, reliability, and sustainability of the healthcare supply chain to
reinforce better patient care and system resilience during emergencies.

Abbasi, B., et al (2020). A cutting edge approach of using machine learning (ML) to predict solutions
for large scale optimization problems in the blood supply chain management to improve efficiency and
nimbleness. Blood product supply chain is inherently complex, including dynamic demand, perishable products,
and importance of timely delivery. Using ML models trained on real time and historic data, we can predict such
solutions for donor scheduling, inventory management and distribution route management on a supply chain.
Predictive analytics can be used to ML to forecast demand patterns, anticipate potential shortages and allocate
resources as effectively as possible — even in emergency scenarios. These models can work with huge datasets
and factor in demographics of population, seasonal factors, some transportation impediments etc. ML is able to
solve such complex problems instantaneously (or near instantly), at a much lower computational complexity, also
resulting in resources being saved. While issues like data quality, model effectiveness, and implementation
expenses exist, ML driven optimization is highly encouraging. This approach to blood supply chain management
reduces waste, lifts service levels, and improves decision making under uncertainty providing the most critical
resources when and where they are needed most. This then sets the way for the development of a smarter, more
resilient healthcare system.

Abouee-Mehrizi, H., et al (2022). The potential for transformative changes in how healthcare systems
utilize the blood supply chain is also possible with a smart platform for blood bank data management that uses
machine learning to predict demand. Blood inventory management is an important, yet highly difficult, function
to perform, characterized by perishable blood products and unpredictable demand. Using a platform that is based
on machine learning, historical data, donor patterns, seasonal trends, healthcare demands and so on can be
analyzed to provide a precise forecast of the requirements of blood from one region to the other. This capability
enables the prediction of shortages in addition to wastage due to overstocking — an efficient utilization of
resources. They could also automate the donor outreach, identifying the ideal times to run the drives and predicting
potential shortages in their donating systems well in advance. Using real time data integration at several blood
banks, unites a network to track availability, distribution, demand alignment. A challenge lies in securing data,
getting rid of historical data biases, and convincing blood bank employees to adopt the tool. However, this
technology can greatly improve the decision making, streamline the operations of the supply chain, and improve
blood delivery reliability in both emergency and routine situations, as long as there is proper design and
implementation. The smart blood bank management platform not only optimizes the utilization of resources but
provides a backup to better patient care and life saving interventions through the more resilient and responsive
supply chain.

1. Methodology

In hospitals, blood supply chain optimization necessitates data driven strategies to address intrinsic
complexities in blood supply chain, for example, volatile demand, perishable inventory and logistical challenges.
Analyzing historical data, analyzing seasonal trends and demographic factors, forecasting blood demand is a thing
that is done by predictive analytics and it plays a vital role. Access to blood traceability provides hospitals and
blood banks the ability to anticipate shortages, plan procurement proactively, and prevent the wastage caused by
overstocking. Additionally, inventory management exploits algorithms to follow blood product lifecycles,
optimize its stock level, and give a higher priority to the usage of blood products nearing to expiry. These systems
make available supplies meet real time demand and also minimize spoilage risk.
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Proposed Blood Supply Chain Network
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The image of the proposed blood supply chain network initially considers donors, blood collection
facilities, storage facilities, hospitals, and real-time inventory management using capacitated vehicles. Blood is
donated by donors to collection facilities, followed by transport with vehicles to blood storage centers for storage.
They collect and distribute blood as it is needed to hospitals. Optimized transportation efficiency is achieved with
capacitated vehicles and real time blood stock and logistics tracking can be done using an integrated inventory
system. This system reduces the waste and maximizes the collaboration of the stakeholders in order to decrease
the cost of a given healthcare organization and improve the working of supply chain and in accomplishing this
process.

Supply chain visibility is enhanced by Real Time monitoring and tracking systems during the blood
product collection, storage and distribution phases, which providing stakeholders the ability to track blood
products throughout this process. Temperature fluctuations and delays can be alerted through these systems thus
complying with quality standards and reducing loss. Technology powered collaborative frameworks like
blockchain or cloud-based platforms enable smooth coordination among blood banks, hospitals and logistic
provider. Compared to more traditional communication platforms, these platforms facilitate transparent
communication, efficient resource allocation and quick response to emergencies, e.g. re-distribution of surplus
stock when there are shortages of the same in different regions. All combined, these strategies establish a resilient,
efficient blood chain that can reliably meet patient needs, minimize wastage, and support cost effective operations.
Integrating data driven tools transforms the blood supply chain from being proactive on the one end and adaptive
on the other, which improves healthcare outcomes and better resource management.

IV. Mathematical Model
The below mentioned notations and assumptions are used to develop the mathematical model
Notations:
a. I(t) is the on hand inventory at any time ¢
b. The demand rate function D (t) is assumed to be a function of time in a polynomial form: D(t) =
BtY~1 with y > 1 for increasing demand, y < 1 for decreasing demand and y = 1 for constant demand
and [ is a positive constant.
c. ﬁ; is the triangular fuzzy demand rate
D, is the cloud fuzzy demand rate
e. 6(&) is the preservation technology cost dependent Deterioration rate which is defined as 6(&) =
6,e 7% where 0 < 6,,5 < 1,6, = initial deterioration rate.
f. T is the total cycle time
A is the Set up cost per cycle
h,. is the Inventory holding cost per unit per unit time

S
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d, is the Deterioration cost per unit per unit time
p is the purchasing cost per unit

s is the Shortage cost per unit per unit time

Q is the initial inventory level

TIC is the total cost per unit time

YTIZ'; is the fuzzy total cost per unit time

. TIC, is the cloud fuzzy total profit per unit time

Assumptions:

Demand rate is uncertain in character.

Single deteriorating type of product is considered over a finite planning horizon T.

The deterioration rate 6 is depending on the preservation technology investment cost £.
There is no repair or replacement of deteriorated products during cycle time T.
Shortages are allowed and completely backlogged.

Lead time is zero.

c B B-_.W'-—"‘-'

me a0 o

Crisp mathematical Model

The initial inventory level is Q at time t = 0. The inventory level gradually depletes to zero at time t = t; due
to demand and deterioration. Now shortages occur and accumulate to the level I at time t = T. Then the cycle
repeats thereafter.

Inventory a

> Time

Fig. 1: Graphical representation of the inventory system

The mathematical formulation of the model is given by

LO4o@i@) =—ptrt, 0<t<t (1)
0 = _per, t,<t<T 2)
With the boundary conditions:
1(0) =Q, I(t,) =0,I(T) = —I 3)
Solving (1) and (2) we get
— ity — ) £ 8D (p v+1 _pre1y) p-0(Ot

10 =B @7 -+ 22567+ - o) e 4)
10 =2 -} 5)
Now from (4) and the boundary condition 1(0) = Q we get

gLy 1 89 4y
Q=plur+ T ury (6)
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Set up cost in the cycle T is

Su.=4A @)
Purchasing cost in the cycle T is

— — l y G(f) y+1
R=Qp=pBlit + ot} ®)

Holding cost in the cycle T is
H, = h, [ I(t)dt
— y+1 9(5) y+2
= Bh {(y+1) + 2(y+2) t } ©)
(Neglecting higher powers of (§) )
Deterioration cost in the cycle T is

D, =d, [,*8(O)I(t)dt

_ £,V + ) . y+2
= pd,00) {( +1) + 2(y+2) b } (10)
Preservation technology cost in the cycle T is
Pr, =&ty (11

Shortage cost in the production cycle T is

Se=s [ {~1(O)} dt

_ B 1 1 14 1

= 5;{t1VT LA A } (12)
Therefore, the total inventory cost of the system is
TIC(ty,€) = Su, + P. + H. + D, + Pr. + S,
Hence from the relations (7) - (12) we get,

TIC(t,) = A+ pB (st + T2t 4+ (b + d,0(0)) [t + soagp 72 + 8t +

s (r+1) 2(y+2)
1 y+1 _ Y L oy+1
Y {tl T= (y+1)T Gl } (13)

(Where 0(§) = 6ye~%)
Then the problem is described as follows:
Minimize TIC(t,,§),Subjecttot, > 0,0 <& <&
Our aim is to obtain the minimum total inventory cost TIC (t;, §) with respect to the time interval ¢t; and
the cost of preservation technology . The objective function is non- linear and continuous function of two

variables. The necessary condition for existence of the solution is IE — 0 and al = 0 provided it satisfies
1
d°TIC 0d°*TIC
ot 0t 0é
>0
d%TIC 0d*TIC
oéat,  0&?

Fuzzy Mathematical Model
In real-life scenario, it is observed that the demand rate cannot be predicted precisely. Hence, to formulate the
fuzzy model we assumed demand rate as fuzzy number.

Let us consider the demand parameter f as triangular fuzzy number B; as B; = (By, Bz, Bs)
Hence the total fuzzy profit function reduces to (fuzzifying (13))

TTC (t1,) = A+ pB; (S t7 + s 6,71} 4 By (ke + d,0(9) {

Tl R

(+1) Gt 2(y+2)
sBr 1 oyl Yy
¥ {tl Uroretd Ik } (19

Hence, the membership function for the fuzzy cost under triangular fuzzy number is
HeT% 11c, < TIC < TIC,

TIC,—TICy
u(TIC) = \ N&=MC \ppe < TIC < TIC, (1)
TIC3-TIC,
0, Otherwise

Where TIC;,i = 1,2,3 can be obtained by replacing E; with §;,i = 1,2, 3 in equ. (14) and expressed as

— o) y+1 y+1 6 y+2
TIC(t,§) = A+ PR [Tt + Tty }+ Bilhe + d,0(9)) [ " + sop b7+t +
SBify ypr 1 py+1 _ y+1
¥ {tl T—ooT (y+1) b } (16)
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Now, left a- cut of u(TIC) is L(a) = TIC, + a(TIC, — TIC,)

and right a- cut of u(TIC) is R(a) = TIC; — a(TIC; — TIC,)

By using the Yager’s ranking index method for defuzzification, the defuzzified value of the fuzzy objective
function is

= 1,1
I(TIC;) = S J, (L(@) + R(@)}da
_ (b’1+2b’z+ﬁ3) 1., , 6@ .y (ﬁ1+2ﬁz+ﬁ3)
=A+p L +(y+1)t }+ (hr +d,09) |

S (Ba+2B2+B3) [, y y+1_L y+1
£t +2 7{t1T ST - gy (17)

Then the objective functlon under fuzzy model is described as follows:
Minimize TIC(t,,£), Subjectto t;>0,0<§<¢

y+1 6(5) y+2
(r+1) ty +2(y+2) ty }+

Cloud Fuzzy Model
To formulate the cloud fuzzy model, let us assume the demand parameter f as a cloud triangular fuzzy number.
Bo=b(1-L)bb(1+ ) for0<po<1t>0
The total cloud fuzzy cost function is given by
TIC,(t,, &) = A+ F{lt P+ 2 b By + d0(0)) [t 22 e 4
c\ly, Pbc 17l ( +) c 7+ ty 2(/+2)
Sﬁc
Peferr -

T}/+1 __r t1y+1} (18)
Again the membership function for the fuzzy objective function under cloud triangular fuzzy number is

(Y+1) r+1)
(% TIC, < TIC < TIC,
2

W(TIC,t) = To-Te e e <, (19)

TIC3-TIC; '
t 0, Otherwise
Where TIC;,i = 1,2,3 can be obtained by replacing f, with b (1 - ﬁ) ,b,b (1 + i) in equation (18) and

expressed as

TIC,(t;,&) = A+pb (1 -2 far+ (ifl)) T b (1= ) (e + 4, 0) (st +
6@ 14

2(y+2) y+2} +ét + b (1 - _) {tl r= (y+1) T - mt YH} 20)

TIC,(t,,§) = A+ pb{ 67+ et bk + 4 6O) [+ e g+

sb 1 Y

V{tlyT o+ - ) tlYH} @0

And

TIC,(t1,&) = A + pb (1 +2)far+ (ifl)) 67 4+ b (1455 (b + d,60) {07+ +
6@ 14

2(y+2) y+2} Hiti+y b (1 + 1_+t) {tlyT a WTYH Y tly+1} (22)

Now, left a- cut of a)(TIC t)isL(a,t) =TIC; + a(TIC, — TIC,)

and right a- cut of w(TIC,t) is R(a,t) = TIC; — a(TIC; — TIC,)

By using the extension of Yager’s ranking index method for defuzzification, the defuzzified value of the cloud
fuzzy objective function is

a=1 t=T
1(TIC,) =57 f j {L(a,t) + R(a,t)}dt da
a=0 t=
_ (g-p) log(1+T) y o 0 £, 7+ (6-p) log(1+T)
A+pb{1+ = }{ytl toan }+b{1+ }(h +
y+1 0(§) y+2 (0' p) log(1+T) y+1 _
d 9(5)){( Rt }+ft 43 b{l P }{tl T— T
)4 y+1
Lo (23)

Then the objective function under cloud fuzzy model is described as follows:
Minimize TIC,(ty,§), Subjectto t; >0,0<¢&<¢
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V. Numerical Analysis

In this Section, we have calculated optimal time interval length t,*, and cost of preservation technology £* and
the minimum total cost TIC* for Crisp model, TIC;" for fuzzy model and TIC.* for Cloud fuzzy model over
cycle time T for given values of other parameters by considering example.

Example:
The following numerical values of the parameters have been considered in appropriate units to evaluate the

models

For Crisp model, A = 100, =5,y =038, 6, =0.2,6§ =0.5,h, =2,d, =5p=15,s =13,T=51n
appropriate units.

For fuzzy model, E = (B4, B2, B3) = (3.5,5,6.5 ) and keep other parameters as in crisp model.

For cloud fuzzy model, p = 0.12,0 = 0.65, b = 5 and keep other parameters as in crisp model.

Table 1. Optimal solutions under different environments

Environment t" & Optimal Cost
Crisp 3.28 1.8 TIC* =1287.35
Fuzzy 3.36 2.1 TFI‘C? =1103.71
Cloud Fuzzy 3.52 2.4 TIC," =1062.39

From Table 1, we observe that Cloud Fuzzy model is the most profitable policy compared to the other
policy. In this model we get the minimum cost of the inventory system is 1062.39 along with the time is
3.52 and the preservation technology investment cost is 2.4.

The degree of fuzziness under a fuzzy environment can be calculated using the formula Dy = %, where
U and L are upper bound and lower bound of triangular fuzzy number, respectively, and M =
3(median) — 2(mean) is the mode of the triangular fuzzy number. The degree of fuzziness under cloud

fuzzy environment known as the cloud index can be obtained using the formula /. = w. We have
a fuzzy demand parameter B? = (3.5,5,6.5 ). Therefore, upper bound is U = 6.5 and lower bound is L =

3.5. The median of § is 5, and mean is 5; therefore, mode M = 5 and degree of fuzziness Dy = 0.3. Since

the cycle time under the cloud fuzzy environment is T = 5 and cloud index I, = 0.08, which proves that
ambiguity associated with cloud fuzzy environment is less than in the fuzzy environment.

VI Sensitivity Analysis

Sensitivity analysis under different environments is conducted by changing one of ,8,,6, 4, h,,d,,p, s and
keeping others parameters fixed.

Table 2: Impact of 8, on optimal cost under different environments

Change value Crisp Model Fuzzy Model Cloud Fuzzy Model
t" § Tic* " ¢ TIC, t" " TIC,”
0.30 3.1 1.64 1321.57 3.23 1.82 1246.21 3.39 2.10 1173.26
6, 0.25 3.19 1.72 1292.32 3.31 2.04 1183.05 3.46 2.26 1119.71
0.15 3.32 1.89 1259.15 3.39 2.22 1056.31 3.55 2.49 1010.23
0.10 3.39 1.96 1207.26 3.45 2.29 1002.53 3.63 2.61 963.57
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Fig. 2 Impact of 6, on Total inventory Cost under different environments
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Table 3: Impact of § on optimal cost under different environments
Change value Crisp Model Fuzzy Model Cloud Fuzzy Model
o & TIC” o 3 Tic, o ¢ TIc,
0.7 3.38 1.98 1208.42 3.46 2.3 1047.25 3.64 2.62 985.47
) 0.6 3.31 1.87 1269.76 341 2.25 1139.22 3.56 2.50 1059.36
0.4 3.18 1.73 1297.47 3.32 2.14 1194.65 3.47 2.29 1120.39
0.3 3.09 1.61 1345.92 3.25 1.95 1216.26 341 2.06 1194.14
Fig. 3 Impact of 6 on Total inventory Cost under different environments
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Table 4: Impact of 4 on optimal cost under different environments
Change value Crisp Model Fuzzy Model Cloud Fuzzy Model
t 5 TIC” f 5 TIc, f 3 e,
150 3.28 1.95 1310.21 3.36 2.22 1153.50 3.52 2.52 1126.83
A 125 3.28 1.88 1298.53 3.36 2.15 1126.33 3.52 2.47 1089.65
75 3.28 1.69 1263.45 3.36 1.93 1067.36 3.52 235 1027.76
50 3.28 1.51 1236.76 3.36 1.87 1027.97 3.52 2.29 982.23
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Fig. 4 Impact of A on Total inventory Cost under different environments
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Table 5: Impact of h, on optimal cost under different environments
Change value Crisp Model Fuzzy Model Cloud Fuzzy Model
t," ¢ Tic” t," " TIC, 2% ¢ TIC,”
3 3.23 1.94 1334.26 3.31 2.23 1191.62 3.45 2.53 1136.37
h, 2.5 3.26 1.87 1296.87 3.33 2.16 1154.41 3.49 2.48 1102.46
1.5 3.29 1.68 1258.27 3.38 1.94 1085.87 3.55 2.36 1022.39
1 331 1.52 1247.60 341 1.88 1032.31 3.58 2.31 996.81
Fig. 5 Impact of h, on Total inventory Cost under different environments
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Table 6: Impact of d,. on optimal cost under different environments
Change value Crisp Model Fuzzy Model Cloud Fuzzy Model
b 5 TiCc” b ¢ Tig, b 3 TIc,
7 3.25 1.93 1356.29 3.32 2.24 1196.54 3.46 2.55 1148.32
d, 6 3.27 1.86 1306.31 3.34 2.17 1173.87 3.48 2.49 1119.71
4 3.29 1.67 1276.11 3.39 1.95 1092.46 3.54 2.37 1047.26
3 3.33 1.53 1256.74 3.42 1.89 1053.19 3.57 2.33 1024.47
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Fig. 6 Impact of d,. on Total inventory Cost under different environments
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Table 7: Impact of p on optimal cost under different environments
Change value Crisp Model Fuzzy Model Cloud Fuzzy Model
o £ TIC” o £ Tic, o g Tic,
19 3.22 1.39 1331.98 3.31 1. 68 1213.09 3.45 2.01 1148.47
p 17 3.27 1.45 1293.23 3.33 1.72 1155.27 3.49 2.18 1106.30
13 3.31 1.79 1257.58 3.38 2.16 1096.75 3.55 2.49 1039.35
11 3.38 1.91 1246.27 341 231 1031.27 3.58 2.57 979.19
Fig. 7 Impact of p on Total inventory Cost under different environments
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Table 8: Impact of s on optimal cost under different environments
Change value Crisp Model Fuzzy Model Cloud Fuzzy Model
6 £ TiC” b £ TIg, t 3 e,
15 3.32 1.95 1354.29 3.42 245 1221.19 3.56 2.78 1172.02
s 14 3.29 1.88 1313.23 3.39 2.27 1161.67 3.48 2.57 1106.57
12 3.24 1.37 1248.88 3.32 1.70 1083.89 3.46 2.01 1027.19
11 3.22 1.11 1211.36 3.29 1.59 1028.27 3.42 1.78 981.43
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Fig. 8 Impact of s on Total inventory Cost under different environments
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VII. Observations

It is observed from the tables (2) — (8) that:

1.

il.

iii.

iv.

With the increase (or decrease) of 6, , A, h,, d, p, S, the total inventory cost under different environments
TIC,TIC; and TIC, increases (or decreases) monotonically. Further, TIC,TIC; and TIC, are highly
sensitive towards the parameters 6, h,, d,., p, s but moderately sensitive towards A.

For different environments, with the decrease (or increase) of &, the total inventory cost
TIC,TIC; and TIC, increases (or decreases) monotonically. Further, TIC,TIC; and TIC,  are
moderately sensitive to the parameter &.

When parameters 6,4, h,,d,,p,s increase, preservation technology investment cost ¢ increases (for
the three models). With the decreasing values of the parameter 8, preservation technology investment
cost ¢ increases (for the three models). The preservation technology investment cost ¢ is moderately
sensitive to 68y,68 , A, h,, d,, p,s.

Following the increase of parameters §, s, the timew period t; increases (for the three models). However,
when the parameters 6, h,,d,, p decrease, the time period t; increases (for the three models).
Particularly the production period t; changes nothing when the parameter A increases or decreases (for
all models).

VIIIL. Conclusion
The proposed model offers a realistic and adaptable framework for managing blood inventory systems,

addressing both the perishable nature of blood and the uncertainty in its demand. By employing fuzzy and cloud
fuzzy environments, the model captures the ambiguity inherent in medical supply chains more effectively than
traditional crisp models. The integration of preservation technology cost as a control variable introduces a practical
trade-off between operational cost and blood wastage, highlighting the importance of investing in infrastructure
to extend shelf life. The non-linear, two-variable optimization provides a flexible yet robust structure for
identifying the cost-optimal cycle time and preservation investment. The use of Yager's ranking index and a-cut
methods for defuzzification ensures that decision-makers are supported with actionable insights under uncertainty.
In application, this model can greatly benefit blood banks, hospitals, and healthcare policymakers aiming to reduce
costs, minimize blood wastage, and ensure timely availability of blood products. Future extensions could explore
multi-item scenarios, different blood types, and the impact of random supply disruptions to enhance the model's
utility in real-world scenarios.
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IX. Future Work

In turn, future research on data driven strategies of efficient blood supply chain management in hospitals
will cover several crucial issues aimed to achieve greater efficiency and resilience. Among them, the introduction
of advance machine learning algorithms and Artificial Intelligence (Al) to assist in improving the accuracy of
prediction of demand and optimizing the logistics are one key area. These technologies can process complex, real-
time data to predict demand patterns, detect anomalies and make adaptive strategies recommendations in
emergency situations.

Another important direction is development and setup of blockchain based frameworks for supply chain
transparency and traceability. With blockchain, data security is improved and trust among stakeholders is
established, improving collaboration and accountability between stakeholders increase.

Future work should examine the use of the Internet of Things (IoT) to monitor conditions during blood
storage and transportation. Sensors that are at [oT can offer real time updates on temperature, location and other
key parameters providing guarantees that safety standards are being met and that wastage is being minimized.

Another promising area is for the implementation of decision-support systems for hospitals and blood
banks. Actionable insights, arising out of these systems can be used to manage inventory, plan logistics, and
allocation of resources for better supply chain efficiency.

Studies can be done looking at the socio-economic impact for those taking up data driven strategies in
the low resource part of the world and creating a level playing field when it comes to accessing the most advanced
solutions everywhere. But his directions will mean innovation and a more resilient healthcare system.
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