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Abstract 

Grinding is a common method in mechanical engineering for machining products that require high precision. 

This study focuses on the multi-objective optimization of the SKD11 steel grinding process on a surface grinding 

machine. An experimental plan consisting of a total of 9 experiments was designed using the Taguchi method. In 

each experiment, three cutting parameters were varied: workpiece speed, feed rate, and depth of cut. In each of 

these experiments, four performance criteria were measured: surface roughness (Ra), cutting force component 

in the x-direction (Fx), cutting force component in the y-direction (Fy), and cutting force component in the z-

direction (Fz). The ENTROPY method was used to calculate the weights for these criteria, while the RAM 

method was employed to solve the multi-objective optimization problem. The results showed that the optimal 

values for workpiece speed, feed rate, and depth of cut were 10 (m/min), 4 (mm/stroke), and 0.01 (mm), 

respectively. With these optimal cutting parameter values, the corresponding values for the performance criteria 

Ra, Fx, Fy, and Fz were 0.49 (μm), 18.4 (N), 15.2 (N), and 28.4 (N), respectively. 
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I. Introduction 

Grinding is a highly prevalent machining method in mechanical manufacturing [1]. This process is 

frequently employed for producing parts that demand a high degree of precision [2]. To fully capitalize on the 

advantages of grinding, it is essential to conduct research aimed at optimizing the process [3]. Numerous studies 

have been carried out on multi-objective optimization of the grinding process to ensure that multiple parameters 

simultaneously achieve desired values. Published research shows that scientists have applied various algorithms 

to solve multi-objective optimization problems and have used different methods to assign weights to the 

objectives. This article will not summarize all published studies but will focus on a selection of recent research 

on this topic. 

The Nelder–Mead algorithm, integrated into the DESIGN EXPERT V7.1.3 software, has been used for 

the multi-objective optimization of EN-8 steel grinding. The goal was to simultaneously minimize surface 

roughness and maximize the material removal rate, with both criteria being assigned an equal weight of 0.5 [4]. 

In [5], the DEAR algorithm was also used for the multi-objective optimization of SAE420 steel grinding. The 

objective was to minimize surface roughness and the vibration of the grinding machine spindle in three 

directions (x, y, and z). In this study, the weights of the objectives were calculated using the DEAR algorithm 

itself. The MOORA and COPRAS algorithms were utilized for the multi-objective optimization of SKD11 steel 

grinding, with the aim of achieving the lowest possible surface roughness and the highest material removal rate. 

Here, the weights of these two criteria were calculated using the Entropy method [6]. The GA algorithm was 

applied to optimize the grinding of Pinus sylvestris wood, specifically to minimize surface roughness [7]. The 

GA algorithm was also used for the multi-objective optimization of SKD11 steel grinding, where the weights for 

three objectives—surface roughness, grinding time, and the deviation between the actual and desired grinding 

depths—were chosen to be equal, at 1/3 each [8]. The DEAR algorithm was applied for the multi-objective 

optimization of AISI 4140 steel grinding to ensure low surface roughness and a high material removal rate, with 

the objective weights being determined by the DEAR algorithm itself [9]. The TOPSIS algorithm was employed 

for the multi-objective optimization of DIN 1.2379 steel grinding, aiming to simultaneously minimize surface 
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roughness and the x, y, z-direction spindle vibrations while maximizing the material removal rate. In this case, 

the weights of the objectives were all set to an equal value of 0.2 [10]. In [11], the Nelder-Mead algorithm was 

also used for the multi-objective optimization of Hardox 500 steel grinding to ensure the minimum possible 

surface roughness and the maximum material removal rate, with equal weights assigned to these two criteria. 

The PSO algorithm was used to perform multi-objective optimization on D2 tool steel grinding to ensure the 

maximum material removal rate and minimum dimensional error, though the weights of these two parameters 

were not clearly defined [12], etc. 

This brief summary of several studies indicates that various algorithms and weighting methods have 

been applied to multi-objective grinding optimization. However, it appears that no existing literature has 

integrated the ENTROPY method for weighting criteria with the RAM algorithm for multi-objective 

optimization of the grinding process. This research gap motivated the current study. 

 

II. Materials and Methods 

2.1. Experimental Setup 

The test specimens were made of SKD11 steel, with dimensions of 40 mm (length), 25 mm (width), 

and 8 mm (height). The chemical composition of some of the key elements of this steel is presented in Table 1. 

All experiments were performed on an APSG-820/8A surface grinding machine manufactured in Taiwan. 

Surface roughness (Ra) was measured using a Mitutoyo SJ-201 roughness tester from Japan. The cutting force 

components were measured with a Kistler dynamometer from Germany. To minimize the influence of random 

errors, each parameter (surface roughness and force components) was measured at least three times per 

experiment. The final value for each output parameter was the average of these repeated measurements. 

 

Table 1. Chemical composition of SKD11 steel 

C (%) Si (%) Mn (%) P (%) S (%) Cr (%) Ni (%) Mo 

(%) 

1.03 0.23 0.31 0.022 0.022 11.71 0.18 0.92 

 

2.2. Experimental Matrix 

In each experiment, three input parameters were varied: workpiece speed, feed rate, and depth of cut. These 

three parameters were selected due to their ease of adjustment by a machine operator [13]. For each parameter, 

three distinct levels were tested, corresponding to encoded levels 1, 2, and 3, as shown in Table 2. These values 

were chosen based on a review of relevant literature and the technical capabilities of the grinding machine used 

[13]. 

The experimental matrix was designed as a Taguchi L9 array, comprising 9 experiments (Table 3). This design 

is widely used for optimization experiments in mechanical engineering and has been frequently applied in recent 

years [13]. 

 

Table 2. Input parameters 

Parameter Unit Symbol 
Value at level 

1 2 3 

Workpiece 

velocity 
m/min v 5 10 15 

Feed-rate mm/stroke f 4 6 8 

Depth of cut mm t 0.005 0.01 0.015 

 

Table 3. Experimental matrix 

Exp. Code value Real value 

v f t v(m/min) f(mm/stroke) t(mm) 

#1 1 1 1 5 4 0.005 

#2 1 2 2 5 6 0.01 

#3 1 3 3 5 8 0.015 

#4 2 1 2 10 4 0.01 

#5 2 2 3 10 6 0.015 

#6 2 3 1 10 8 0.005 
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#7 3 1 3 15 4 0.015 

#8 3 2 1 15 6 0.005 

#9 3 3 2 15 8 0.01 

 

2.3. Experimental Results 

The experiments were conducted in the order listed in Table 3. The output parameters—Ra, Fx, Fy, and Fz—

were measured for each run. The results are summarized in Table 4. 

 

Table 4. Experimental results 

Exp. 
Input parameters Responses 

v(m/min) f(mm/stroke) t(mm) Ra (m) Fx (N) Fy (N) Fz (N) 

#1 5 4 0.005 0.82 21.7 11.3 27.1 

#2 5 6 0.01 0.62 34.5 20.5 24.3 

#3 5 8 0.015 0.75 39.4 16.4 26.2 

#4 10 4 0.01 0.49 18.4 15.2 28.4 

#5 10 6 0.015 0.51 22.5 20.6 30.4 

#6 10 8 0.005 0.41 29.6 19.8 31.2 

#7 15 4 0.015 0.94 31.7 22.7 22.8 

#8 15 6 0.005 0.82 32.7 28.6 30.6 

#9 15 8 0.01 0.73 28.1 18.4 31.5 

 

From the data in Table 4, it is clear that the minimum Ra value of 0.41 μm occurred in Experiment #6, 

the minimum Fx value of 18.4 N was in Experiment #4, the minimum Fy value of 11.3 N was in Experiment #1, 

and the minimum Fz value of 22.8 N was in Experiment #7. This indicates that no single experimental run 

yielded the optimal (minimum) values for all four objectives simultaneously. Instead, it is necessary to identify a 

single best solution that balances these competing objectives. This cannot be achieved by simple observation of 

the data in Table 4; a ranking method is required to select the best alternative. For this reason, the RAM 

algorithm will be used to rank the experimental runs in this study, but first, the weights for each criterion must 

be calculated using the ENTROPY method. 

 

2.4. Entropy Method 

Let's assume there are m experiments, with n output parameters measured for each experiment. Let xij be the 

value of the j-th output parameter in the i-th experiment, where j=1...n and i=1...m. The weighting of each 

parameter j using the Entropy method follows these steps [14]: 

Step 1: Normalize the values for each criterion using Formula (1). 

𝑛ij =
𝑥ij

𝑚 + ∑ 𝑥ij
2

𝑚

𝑖=1

 
(1) 

 

Step 2: Calculate the entropy measure for each parameter j using Formula (2). 

𝑒𝑗 = ∑[𝑛𝑖𝑗 × 𝑙𝑛(𝑛𝑖𝑗)]

𝑚

𝑖=1

− (1 − ∑ 𝑛𝑖𝑗

𝑚

𝑖=1

) × 𝑙𝑛 (1 − ∑ 𝑛𝑖𝑗

𝑚

𝑖=1

) (2) 

 

Step 3: Calculate the weight for each parameter using Formula (3). 

𝑤𝑗 =
1 − 𝑒𝑗

∑ (1 − 𝑒𝑗)𝑛
𝑗=1

 (3) 

2.5. RAM Algorithm 

The steps for using the RAM method to rank the alternatives are as follows [15]: 

Step 1: Similar to Step 1 of the ENTROPY method. 

Step 2: Normalize the data according to Formula (4). 



American Journal of Engineering Research (AJER) 2025 
 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 62 

𝑟𝑖𝑗 =
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗
𝑚
𝑖=1

 (4) 

Step 3: Calculate the weighted normalized values for each criterion using Formula (5).Here, wj is the weight of 

the j-th criterion 

𝑦𝑖𝑗 = 𝑤𝑗 ∙ 𝑟𝑖𝑗  (5) 

Step 4: Calculate the total weighted normalized scores for each criterion using Formulas (6) and (7). The letters 

B and C denote "beneficial" and "cost" criteria, respectively. 

𝑆+𝑖 = ∑ 𝑦+𝑖𝑗

𝑛

𝑗=1

     𝑖𝑓   𝑗 ∈ 𝐵 (6) 

𝑆−𝑖 = ∑ 𝑦−𝑖𝑗

𝑛

𝑗=1

    𝑖𝑓   𝑗 ∈ 𝐶 (7) 

 

Step 5: Calculate the final score for each alternative using Formula (8). 

𝑅𝐼𝑖 = √2 + 𝑆+𝑖

2+𝑆−𝑖
 (8) 

 

Step 6: Rank the alternatives in descending order based on their scores. 

 

III. Results and Discussion 

By applying formulas (1) to (3), the weights for the parameters Ra, Fx, Fy, and Fz were calculated to be 0.364, 

0.208, 0.218, and 0.210, respectively. 

Using formulas (4) to (8), the RI score for each experiment was calculated and is summarized in Table 5. The 

final column in this table also shows the ranking of the experiments based on their scores. 

 

Table 5. Scores and rankings of the experiments 

Exp. Ra (m) Fx (N) Fy (N) Fz (N) RIi Rank 

#1 0.82 21.7 11.3 27.1 1.390 4 

#2 0.62 34.5 20.5 24.3 1.389 5 

#3 0.75 39.4 16.4 26.2 1.387 7 

#4 0.49 18.4 15.2 28.4 1.394 1 

#5 0.51 22.5 20.6 30.4 1.391 3 

#6 0.41 29.6 19.8 31.2 1.391 2 

#7 0.94 31.7 22.7 22.8 1.385 8 

#8 0.82 32.7 28.6 30.6 1.383 9 

#9 0.73 28.1 18.4 31.5 1.388 6 

 

The computational results identified Experiment #4 as the best among all performed tests. Accordingly, 

the optimal values for workpiece speed, feed rate, and depth of cut are 10 (m/min), 4 (mm/stroke), and 0.01 

(mm), respectively. When grinding with these optimal cutting parameters, the resulting values for the criteria 

Ra, Fx, Fy, and Fz are 0.49 (μm), 18.4 (N), 15.2 (N), and 28.4 (N), respectively. 

 

IV. Conclusion 

This study successfully performed a multi-objective optimization of the SKD11 steel grinding process. 

For the first time, the RAM algorithm was integrated with the Entropy weighting method to solve the multi-

objective optimization problem in surface grinding. Using the Entropy method, the weights for the criteria Ra, 

Fx, Fy, and Fz were determined to be 0.364, 0.208, 0.218, and 0.210, respectively. The RAM algorithm 

identified the optimal workpiece speed as 10 (m/min), the optimal feed rate as 4 (mm/stroke), and the optimal 

depth of cut as 0.01 (mm). With these optimal cutting parameters, the corresponding values for surface 

roughness (Ra) and the force components Fx, Fy, and Fz were 0.49 (μm), 18.4 (N), 15.2 (N), and 28.4 (N), 

respectively. 
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