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Abstract 

The Software Development Life Cycle (SDLC) is a structured process that includes the need to collect, design, 

implement, test, deploy, and maintain. Traditional SDLC functioning, such as waterfalls and agile, are 

primarily manual, which lead to inefficiencies, inaccuracy, and scalability challenges. It examines the 

integration of Artificial Intelligence (AI) in SDLC to address these limitations by automating paper functions 

and increasing decision-making processes. In particular, AI-operated techniques such as natural language 

processing (NLP) and future analytics are examined, including analysis, design, testing, and maintenance of 

requirements for their ability to customize the major stages of SDLC. Out of comparative investigation of 

traditional and AI-operated approaches, this research assesses output, efficiency, and their influence on quality 

in software development. Three research questions lead the investigation, focusing on the adaptation of SDLC 

stages, the advantages, and disadvantages of creativity, problem-solving, and adaptation of person roles in 

decision-making. Conclusions, emphasizing the constant importance of human inspection and expertise, 

highlight the transformational ability of AI to improve software development practices. 
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I. INTRODUCTION 

The systematic phases of software delivery, such as requirements collection, system analysis, design 

creation, coding, testing, deployment, and continuing maintenance, are described by the Software Development 

Life Cycle (SDLC). Because they are mostly manual, SDLC procedures like waterfall and agile are sluggish and 

imprecise. These mistakes lead to gaps in scalability and slow productivity [1][2]. This issue can be effectively 

resolved by artificial intelligence (AI), which enhances decision-making and automates tasks. Predictive 

analytics, for example, might automate testing and maintenance, while natural language processing (NLP) could 

be used for requirements analysis[3]. Even with the growing literature on AI in product improvement, existing 

research lacks a comprehensive comparison between traditional and AI-enhanced approaches across all SDLC 

stages. In addition, the influence of AI on person roles, especially in terms of creativity and ethical decision-

making, stays underexplored  

 

Thecontributions of this paper: 

This paper addresses these gaps through the following key contributions: 

1. A systematic evaluation of AI-driven and traditional SDLC approaches, assessing their effectiveness in 

productivity, efficiency, and software quality. 

2. An investigation into how AI reshapes developer roles, focusing on creativity augmentation, problem-

solving, and ethical implications in automated decision-making. 

To guide our analysis, we explore three research questions: 

 

1. How do traditional methods and AI-powered techniques compare in terms of optimizing the Software 

Development Lifecycle (SDLC) phases—such as requirements gathering, design, implementation, testing, and 

maintenance?  
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2. When compared to traditional methods, what are the primary advantages and disadvantages of AI-driven 

approaches in terms of production, effectiveness, and quality?  

3.How do AI-powered technologies affect the human role in the SDLC, namely in terms of creativity, problem-

solving, and decision-making?  

 

II. LITERATURE REVIEW 

The Software Development Life Cycle (SDLC) has long been the foundation of software engineering, 

offering a constructed framework for providing high-standard products. Traditional methodologies, such as the 

waterfall model and agile methods, have been widely adopted but are often attacked for their manual 

procedures, inefficiencies, and scalability challenges [4][5]. These restrictions have stimulated interest in 

utilizing emerging technologies, especially Artificial Intelligence (AI), to enhance SDLC processes. 

 

Traditional SDLC Methodologies 

The waterfall model, one of the oldest SDLC frameworks, confirms a linear, sequential method to 

product development [4]. While it offers lucidity and construction, its rigidity often causes difficulties in 

obliging inconstant demands. Agile methods, instituted in reply to these limitations, prioritize flexibility, 

repeated development, and cooperation with clients [5]. Nonetheless, even agile practices depend heavily on 

manual effort, which can result in inefficiencies and person mistakes, mainly on large-scale ventures [6]. 

 

AI in Software Development 

AI has appeared as a transformative strength in product engineering, providing solutions to automate 

repeated missions, refine decision-making, and increase general efficiency [7]. Natural Language Processing 

(NLP) has been used for demand gathering, allowing automated taking out and analysis of stakeholder 

requirements [8]. Likewise, machine learning algorithms have been utilized to forecast faults and enhancing 

testing procedures, decreasing the time and effort needed for quality assurance [9]. AI-driven tools have also 

been used in code generation and debugging, especially speeding the implementation stage[10]. 

 

Comparative Studies on AI-Driven and Traditional Approaches 

Many studies have investigated the comparative success of traditional and AI-based SDLC approaches. 

For example, research by Amershi et al. (2019)emphasizes the potential of AI to automate repeated tasks, 

developing productivity and decreasing human effort. Nevertheless, the research also alerts against over-

dependence on AI, highlighting the requirement for human oversight to address complex and unclear issues[7]. 

In like manner, Tantithamthavorn et al. (2019) illustrate that AI-driven testing tools can increase test coverage 

and detection of defects, but may face problems with usability and edge cases that require human intuition[9]. 

 

Human Role in AI-Driven SDLC 

The role of human developers has been significantly impacted by the integration of AI into the 

software development lifecycle. While AI can increase human abilities by automating normal missions and 

offering data-driven perceptions, it also boosts concerns about the possible corrosion of creativity and problem-

solving skills [11]. Research indicates that AI can enhance person decision-making by providing predictive 

analytics and pattern recognition, but ethical and emotional considerations remain a field where human 

judgment is indispensable [12]. 

 

3.Comparison Between Traditional Methods and AI-Driven Approaches in regards to Software 

Development Lifecycle (SDLC) 

To compare traditional methods and AI-driven techniques across the SDLC phases, certain research 

questions were identified as stated in Section 1. This study attempted to address these research questions by 

outlining the following aspects: Role of traditional methods and AI-powered techniques compared in terms of 

optimizing the Software Development Lifecycle (SDLC) phases, the advantages, and disadvantages of using 

traditional methods and AI-driven techniques, and the effect of AI-driven techniques on the human role in the 

SDLC, namely in terms of creativity, problem-solving, and decision-making.  

 

1. Traditional methods and AI-powered techniques compared in terms of optimizing the Software 

Development Lifecycle (SDLC) phases: 

 

The software development lifecycle consists of five distinct stages: requirements collection, design, 

implementation, testing, and maintenance. This section will compare the optimization of these phases using 

traditional methods and AI-powered approaches as shown in Table 1.  Recent research quantifies AI’s 
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transformative potential—for instance, Zhang et al. (2024) observed 40% faster development cycles with AI 

integration but noted a 15% increase in technical debt for AI-generated code, underscoring the need for balanced 

adoption. Similarly, Garcia and Lee (2025) propose an "autonomous SDLC" framework, where AI 

automates 80% of routine tasks while reserving human oversight for ethical alignment and creative problem-

solving[13][14]. 

 

1. Requirements Gathering Phase 

Traditional Methods: 

• Process: The requirements are extracted using stakeholder interviews, workshops, and manual 

documentation[15][16]. 

• Strengths: Humans are unique in their ability to understand subtle requirements, context, and edge 

cases that may not be explicitly stated[16]. 

• Limitations: Time- exhaustion, susceptibility to human error, and inability to often scale for large 

projects [15]. 

AI-Driven Techniques: 

• Process: AI-powered tools, such as natural language processing (NLP), examine communication logs, 

emails, and documents to automatically excerpt and prioritize demands[20][21]. 

• Strengths: Faster, more efficient, and scalable. AI can handle large amounts of data and identify 

patterns that humans might miss[20]. 

• Limitations: May struggle with vague or ill-defined requirements. Over-reliance on AI can lead to 

misinterpretation of stakeholder needs[21].Such as GPT-4 reduced requirements gathering time by 60% but 

struggled with ambiguous stakeholder inputs, requiring human validation.[22] 

 

2. Design Phase 

Traditional Methods: 

• Process: Designers deliberate and generate system architectures and user interfaces manually, often 

depending on background and intuition[20][21]. 

• Strengths: Human creativity and contextual understanding lead to innovative and user-centric 

designs[20]. 

• Limitations: Requires a long time and is susceptible to inconsistencies, mostly in huge teams[21].  

AI-Driven Techniques: 

• Process:AI tools, such as generative design and machine learning, analyze past design data to suggest 

templates, free up creatives, and generate multiple design alternatives[23][24]. 

• Strengths: Fast, data-driven, and have the ability to produce merchandising designs that humans might 

not have envisioned[23]. 

• Limitations: AI-generated designs may not be limited to the exact elements that human designers bring 

to the table. It can be difficult to explain why AI is being used[24].AI-generated designs improved prototyping 

speed by 3x but were rated 20% less user-friendly than human designs.[25] 

 

3. Implementation Phase 

Traditional Methods: 

• Process: Developers manually issue, review, and correct the code, which often requires a fair amount 

of time and effort [26][27]. 

• Strengths: Full control over quality code and compliance with project requirements [27]. 

• Limitations: Human error, time-consuming, and other important procedures [26]. 

 

AI-Driven Techniques: 

• Process: AI-powered tools, such as code completion assistants (e.g., GitHub Copilot that developers 

use Copilot wrote code 35% faster but introduced 25% more security vulnerabilities without manual review[28]) 

and static code analyzers, automate code generation, debugging, and optimization [29][30]. 

• Strengths: Naturally reduces errors, raises productivity, and ensures code quality through your testing 

and optimization [29]. 

• Limitations: AI-generated code may lead to weaknesses or compromises in meeting project 

requirements without human oversight [30]. 
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4. Testing and Quality Assurance Phase 

Traditional Methods: 

• Process: Manual testing is work-intensive, wasting time, and susceptible to human issues[31][32]. 

• Strengths: Human testers can recognize usability problems and edge cases where automated tools 

might be absent [32]. 

• Limitations: Ineffective for huge-scale ventures and lacks comprehensive examination coverage [31]. 

AI-Driven Techniques: 

• Process: AI automates assay instances, detecting defects, experimenting, and performing. Tools such as 

visual testing and log analysis provide real-time insights [33][34]. 

• Strengths: quick more effective, and includes comprehensive testing coverage. AI can forecast 

potential defects for needed tests [33]. 

• Limitations: Demands high-quality training data, and may lose marginal cases that testers of humans 

would seize [38]. 

 

5. Deployment and Maintenance Phase 

Traditional Methods: 

• Process: Deployment is manual, and maintenance is reactive, often depending on user comments to 

recognize matters[35][36]. 

• Strengths: Human supervision guarantees that deployments line up with user assumptions [36]. 

• Limitations: assets-intensive and susceptible to detains in matter resolution [35]. 

AI-Driven Techniques: 

•  Process: AI allows predictive maintenance by examining performance metrics to expect defeats. 

Automated bug exposure tools supply real-time control and solutions [37][38]. 

• Strengths: Proactive problem determination, decreased downtime, and sleeker deployments [37]. 

• Limitations: Demands notable computational resort and high-standard data for precise forecasts [38]. 

However, Number of Case studies present AI-driven deployments reduced downtime by 40% but increased 

ethical concerns in healthcare and finance sectors[39]. 

 

Table 1. compare the optimization of SDLC phases using traditional methods and AI-powered approaches 
SDLC Phase Traditional Methods AI-Driven Techniques Comparison 

Requirements 

Gathering 

- Manual stakeholder 

interviews and 

workshops. 
- Time-consuming and 

prone to errors. 

- NLP extracts 
requirements from 

communication logs. 

- Faster and scalable. 

Effectiveness: AI is faster but 

may lack depth. 

Quality: AI ensures 
consistency but may 

misinterpret nuances. 

Design 

- Manual brainstorming 

and design creation. 

- Relies on human 
creativity. 

- Generative design and 

ML suggest templates. 

- Automates repetitive 
tasks. 

Effectiveness: AI speeds up 

design but lacks creativity. 
Quality: AI improves 

consistency but may miss 

details. 

Implementation 

- Manual coding and 

debugging. 
- Prone to human error. 

- AI tools (e.g., GitHub 
Copilot) automate coding 

and debugging. 

- Reduces errors. 

Effectiveness: AI speeds up 

coding but requires human 

validation. 
Quality: AI improves code 

readability and reduces bugs. 

Testing 

- Manual testing is labor-

intensive. 

- Limited test coverage. 

- AI automates test case 
generation and defect 

detection. 

- Comprehensive 

coverage. 

Effectiveness: AI is faster 
and more scalable. 

Quality: AI improves 

coverage but may miss edge 

cases. 

Maintenance 

- Reactive issue 
resolution based on user 

feedback. 

- Resource-intensive. 

- Predictive maintenance 

anticipates failures. 
- Proactive and efficient. 

Effectiveness: AI reduces 

downtime. 

Quality: AI improves 
reliability but requires human 

oversight. 

 

2. Advantages and Disadvantages of AI-Driven Approaches 

Advantages and Disadvantages of AI-driven approaches are identified in terms of three aspects which are 

production, effectiveness, and quality as shown in Table 2.  

Advantages: 

• Production: Automate repetitive missions, which speeds up the development procedure and decreases 

human effort [29]. 
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• Effectiveness: supplies data-driven perceptions, enhancing decision-making and issue-solving [33]. 

• Quality: Decreases mistakes and secures consistency resulting in higher-quality outputs [37]. 

Disadvantages: 

• Production: Over-dependence on AI can result in a lack of human supervision and creativity [24]. 

• Efficiency:  Models of AI demand high-standard data and may have difficulties dealing with unclear or 

unique issues [18]. 

• Quality: AI may miss edge cases or issues of usability that person testers might recognize[32]. 

 

Table2. Advantages and Disadvantages of AI-Driven Approaches 
Aspect Advantages Disadvantages 

Production 

- Automates repetitive missions. 

- Accelerate the development 
process. 

- Over-dependence may 

decreaseperson oversight. 
- May lack creativity. 

Effectiveness 

- Data-driven insights develop 

decision-making. 

- Scalable for huge ventures. 

- Demands high-standard data. 

- have difficulties dealing with 

unclear or unique issues.. 

Quality 

- Decreases mistakes and secures 

consistency. 

- upgrades test coverage and 
reliability. 

- May miss edge cases or usability 

problems. 

- AI-generated outputs may lack 
nuance. 

 

3. Impact on the Human Role in the SDLC 

 

There are two types of effects that resulted from AI-powered technologies in the human role in the SDLC, 

positive effects and negative effects as shown in Table 3. 

Positive Effects: 

• Creativity: AI increases human creativity by supplying innovative resolutions and automating repeated 

missions [29]. 

• Problem-Solving: AI examines data to recognize patterns, allowing humans to center on complex 

challenges [11]. 

• Decision-Making: AI supplies data-driven insights, boosting the accuracy and effectiveness of 

decisions [33]. 

Negative Effects: 

• Creativity: Over-reliance on AI may stifle human creativity and innovation [24]. 

• Problem-solving: AI may face difficulty with fuzzy or unique issues that demand human intuition [18]. 

• Decision-Making: The AI-driven resolution reached may lack ethical and emotional considerations 

[38]. 

Irreplaceable Human Role: 

• Humans stay important for supplying context, ethical judgment, and creativity. 

• AI tools should complement, not substitute, human knowledge [38]. 

 

Table3.  The Impact on the Human Role in the SDLC 
Negative Effects Positive Effects Aspect 

-Over-reliance on AI may stifle human 

innovation. 

-AI enhances human artistry by 

providing innovative resolutions. 

Creativity 

-AI may struggle to solve a complex or 
unique problem that requires human 

intuition. 

- AI recognizes patterns, allowing 
humans to focus on complex 

challenges. 

Problem-Solving 

-Decisions driven by artificial 
intelligence may lack ethical and 

emotional considerations. 

- AI suppling data-driven insights, 
developing accuracy and efficiency. 

Decision-Making 

 

III. Results and Discussion 

Three questions were identified to imply the comparison process between traditional methods and AI-driven 

approaches in the software development lifecycle (SDLC) which are: 

Q1.How do traditional methods and AI-powered techniques compare in terms of optimizing the SDLC phases? 

There are five stages in SDLC and the comparison part done in terms of effectiveness and quality between 

traditional methods and AI-powered techniques in each stage. 

Starting with the requirement-gatheringphase, AI-driven approaches are more efficient for huge-scaleventures 

but may lack the depth of understanding provided by human analysts[17]. While Traditional methods ensure 

better alignment with stakeholder expectations, AI improves consistency and reduces errors in data extraction 
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[16]. The next stage is design, AI speeds up the design process and ensures consistency, but human oversight is 

necessary to ensure designs meet project-specific needs [23]. It also improves design quality by leveraging data-

driven insights, but human creativity remains irreplaceable for addressing unique challenges [21]. 

Moving to the implementation phase, AI significantly speeds up coding and debugging but requires human 

validation to ensure accuracy and security[29]. AI improves code quality by reducing errors and enhancing 

readability, but human expertise is essential for complex problem-solving[27]. In the testing and quality 

assurance phase, AI-driven testing is more efficient and scalable, but human testers are essential for exploratory 

testing and usability evaluation [33]. AI improves test coverage and defect detection, but human intuition is 

critical for identifying subtle issues [32]. 

Finally, AI-driven maintenance is more proactive and efficient in the deployment and maintenance phase, but 

human oversight is necessary to address complex issues[36]. It improves system reliability and reduces 

downtime, but human expertise is essential for strategic decision-making[35]. 

 

Q2. What are the primary advantages and disadvantages of AI-driven approaches in terms of production, 

effectiveness, and quality compared to traditional methods? 

Advantages and Disadvantages of AI-driven approaches were identified in terms of three aspects which are 

production, effectiveness, and quality.Beginning with advantages: Automate repetitive missions, which speeds 

up the development procedure and decreases human effort regarding Production [29]. In the Effectiveness part 

AI-driven approaches supply data-driven perceptions, enhancing decision-making and issue-solving [33]. In 

terms of quality, it decreases mistakes and secures consistency which results in higher-quality outputs [37]. 

On the other hand, some disadvantages were identified which are:  over-dependence on AI can result in a lack of 

human supervision and creativity in terms of Production [20]. Meanwhile, models of AI demand high-standard 

data and may have difficulties dealing with unclear or unique issues regarding efficiency [18]. Last on is Quality 

issue where AI may miss edge cases or issues of usability that person testers might recognize [32]. 

 

Q3. How do AI-powered technologies affect the human role in the SDLC, particularly in terms of creativity, 

problem-solving, and decision-making? 

There were two types of effects that resulted from AI-powered technologies in the human role in the SDLC, 

positive effects and negative effects in terms of creativity, problem-solving, and decision-making: 

Firstly positive effects, AI increases human creativity by supplying innovative resolutions and automating 

repeated missions regarding creativity [23]. Meanwhile, in Problem-Solving, AI examines data to recognize 

patterns, allowing humans to center on complex challenges [11]. The last positive impact is decision-making 

where AI supplies data-driven insights, boosting the accuracy and effectiveness of decisions [33]. 

In terms of negative effects, on creativity, over-reliance on AI may stifle human creativity and innovation [24]. 

Moving to problem-solving, AI may face difficulty with fuzzy or unique issues that demand human intuition 

[18]. In decision-making, the AI-driven resolution reached may lack ethical and emotional considerations [38]. 

 

IV. Conclusion 

Adding artificial intelligence (AI) to the software development life cycle (SDLC) is a vast opportunity 

to fix the issues with old ways of doing things that aren't working well or are limited. This paper shows that AI-

based methods, like natural language processing (NLP) and predictive analytics, can significantly develop 

quality, productivity, and efficiency at many phases of the software development lifecycle (SDLC). In 

requirements gathering, AI refines steadiness and reduces mistakes, while in design, it speeds up processes and 

ensures data-driven insights. During implementation, AI accelerates coding and debugging, and in the testing 

phase increases coverage and fault detection. Finally, in maintenance, AI enables proactive and efficient system 

management. 

However, the paper confirms the significance of balancing AI automation with human skills. While AI 

excels at automating repeated missions and supplying data-driven perceptions, human creativity, intuition, and 

ethical considerations stay irreplaceable, especially in labeling unique challenges and securing stakeholder 

alignment. The advantages of AI-driven approaches, such as increased efficiency and decreased mistakes, must 

be weighed as opposed to possible drawbacks, including over-dependency on AI, challenges with unclear issues, 

and the risk of stifling human innovation. 

Finally, AI-operated technologies are expected to revolutionize the software development life cycle by 

customizing processes and improving results. However, his successful implementation requires a collaborative 

approach that takes advantage of the strength of both AI and human expertise. Future research should focus on 

developing outlines that integrate AI in the software development life cycle, preserving the important role of 

human decisions and creativity in software development. By doing this, the software industry can get more 
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scalability, accuracy, and innovation in providing high-quality product solutions.Also explore longitudinal case 

studies of AI-integrated SDLC in industry settings." 
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