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ABSTRACT: Additive Manufacturing (AM) technologies areextremely widespread due to their procedures have 

proved their capacity to generate intricate forms and are used on a diverse range of materials. Industrial 

applications can develop cracks, keyhole defects, net form issues, and more during and after manufacture. This 

is a result of the many phenomena that take place during printing. It has been demonstrated that the Finite 

element method can accurately predict mechanical properties, as well as shape, size, and microstructure.This 

numerical model optimizes process parameters and forecasts distortions, shapes, residual stresses, as well as 

thermal histories. They also help to better understand how to improve processes. Nonetheless, numerical 

modelling that is used for AM still faces a variety of difficulties. In actuality, multi-physical simulations are slow 

and require simplifying assumptions. This causes a discrepancy between computed and experimental outcomes. 

Machine learning (ML), another viable technology, has advanced due to machine computing capacity. This can 

complement and even replace previous methods. It has been called a technical progress accelerator in various 

fields but is still a novel approach in the field of metal. This review presents ML applications inAM metallic 

components. In addition, themost prevalent AM techniques for metals, both the thermal as well as the 

microstructure model of metal parts produced by AM are analyzed, explained, and contrasted. 

KEYWORDS: Additive manufacturing, direct energy deposition, thermal model, microstructure model, 

machine learning. 
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I. INTRODUCTION 

Additive manufacturing (AM) remainsa relatively new technique that can be applied in the production 

of three-dimensional objects in industrial settings. AM is used in many industries, especially for complex design 

and low-volume production. The repetitive deposition of thin material layers, by a computer model, is how AM 

components are fabricated [1]. AM parts are made by melting the material with focussed energy and then 

rapidly consolidating it. The severe thermal gradients, non-uniform expansion, and contraction of the material 

may have a major effect on the functionality of the printed component throughout the thermal cycle. [2]. AM 

can build complex shapes without moulds, reducing part count [3]. AM parts can be made from steel, titanium, 

and nickel alloys, which are employed in aerospace and healthcare. AM can create complex geometries, but the 

production process is complicated and many factors affect component quality. The microstructure of the metal 

plays a significant role in its characteristics and can significantly affect how it behaves mechanically[4].The 

durability and strength of metal are affected by the size of the dendrites and grains inside the metal, as well as 

the microsegregation of intermetallic compounds and phases[5]. 
The AM technique's settings and the material used will define the microstructure's appearance. The 

approach and parameters will depend on the metallic AM technique used.Directed energy deposition (DED) and 

powder bed fusion (PBF) are two primary approaches utilized in the additive manufacture of metals [6]. The 

digital files serve as the starting point for both of these procedures. After that, the computer-aided design files 
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for the three-dimensional object are sectioned off into sheets, and the information is sent to the printing 

machine. The granules are melted in layers in the next step. In every loop, a powder layer with a predetermined 

thickness is applied to a substrate. After this, a source of heat is raster-scanned throughout the powder layer to 

heat it. When the powder is heated, it melts and forms a bond with either the base or the layer that was 

previously melted. After the platform has been lowered, the operation will begin again.In DED operations, the 

feedstock can be either wire or powder, and the heat source can be either a laser, an electron beam, or 

electricitywhile PBF uses a laser or electron beam [7]. Melting feedstock near or on the substrate creates a layer. 

Fig. 1 illustrates a few examples of both laser-PBF and laser-DED configurations. 

 

Laser Powder Bed Fusion Laser Direct Energy Deposition 

  

Fig. 1 Schematic diagram of laser powder bed fusion and laser direct energy deposition configurations [8]. 

Although both techniques layer the part, there are major differences between them. Layers must be 

piled in one direction because PBF machines can only operate on three axes. DED machines with 5+ axis 

settings can generate layers in any direction if the part and tool head don't conflict. Hence, AM can repair and 

print parts more efficiently with DED. This review presents ML applications in Metal AM parts. In addition to 

some of the most prevalent AM processes for metals, followed by modelling of metallic parts in AM with their 

comparison. The remaining parts of this chapter are laid out in the following format. In Sect. 2, we explain in 

more detail both thermal modelling and modelling of microstructure in the direct energy deposition method of 

additive manufacturing. In addition,the comparison with the numerous models used in terms of their degrees of 

precision and length scales,and justify how the models are chosen and coupled. In Sect. 3, we classify ML used 

for AM. In Sect. 4, we show the applications of ML for metal AM in terms of the prediction of mechanical 

behaviour and optimization of AM process parameters. Section 5 summarizes our main findings and enumerates 

future work. 

 

II. MODELLING IN METAL ADDITIVE MANUFACTURING 

The various microstructure models, highlighting the model’s boundary conditions as well as the assumptions it 

makes are summarized in Fig. 2. 
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Fig. 2. Schematic representation of microstructure and thermal models along with their respective boundary 

conditions and assumptions. 

a. Thermal Modelling in Direct Energy Deposition Additive Manufacturing 

The thermal models that are utilized in conjunction with the microstructure models are discussed. 

i. Finite element method  

The finite element method (FEM) has been integrated with a variety of other microstructure models. In most 

cases, these simulations are performed on extremely large volumes that include a great number of tracks and 

layers. When compared to PBF models, simulation for DED has some unique characteristics. It is necessary to 

continue adding material while the heat source is being moved. This is performed in FEM models by positioning 

inert components close above the substrate; these components become active as the temperature rises.This 

serves as a depiction of the metal that is being fed into the melt pool as it is being added. For an element to be 

considered dead or inactive, its thermal conductivity must be reduced to nearly zero. This ensures that the 

element’s temperature will not shift. When it comes to obtaining correct temperature profiles and melt depths, 

meshing for FEM plays a significant role. The hexahedral element is widely utilized because it offers improved 

precision and is capable of functioning effectively with simulations that make use of simple geometry.  

ii. Computational fluid dynamics 

To collect data on the geometries of the track and the melt pool as well as the temperature profiles over time, 

computational fluid dynamics-CFD techniques, more notably the finite volume method-FVM, have been 

utilized. The Navier-Stokes equation is effectively solved through the application of FVM methods.This allows 

for the simulation of AM effects such as vaporization and the Marangoni effect. Because of this, more precise 

predictions can be made regarding the geometry of the melt pool as well as the temperature distribution within 

the pool[9]. When the number of partial differential equations that need to be solved grows, the amount of 

computing power that is necessary also grows. The vast majority of FVM models are only capable of simulating 

one melt track in three dimensions [10].In DED processes, the CFD-discrete element method approach has also 

been employed. This technique takes into account, not just the interactions with the melt pool, but also gas flow, 

powder flight, and heating but the simulation's detail increases operational costs.Although CFD can produce 

more realistic tracks, there is little published literature on its application to DED procedures.Another one of the 

CFD methods that are used to connect with microstructure models is called the lattice Boltzmann Method 

(LBM). LBM represents the flow of fluid by solving discrete Boltzmann equations, as opposed to the Navier-

Stokes equation, which describes the flow of fluid.This is because LBM is more accurate. While LBM can 

model powder distribution in addition to fluid flow and evaporation,FVM needs to be coupled with a discrete 

element approach to be able to simulate powder distribution. Although CFD models are capable of simulating a 

wide variety of physical processes, the simulation is restricted to only a few short tracks due to the complexity 

of the models and the small cell sizes used which can be improved. The FEM models make a lot of assumptions, 

resulting in a reduction in their accuracy but an increase in the size of the domain, which allows it to support a 

greater number of longer tracks and more layers. 
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b. Modellingof Microstructure in Direct Energy Deposition Additive Manufacturing 

The following microstructure models will be discussed: Cellular Automata (CA), Kinetic Monte Carlo 

(KMC), as well as Phase Field Modelling (PFM). Both CA as well as KMC models are considered mesoscale 

models because they simulate a large number of grains by focusing largely on the total size of the grains as well 

as their aspect ratio [8]. The PFM is a micro-scale model since it simulates sub-grain level, which allows it to 

obtain the concentration of solutes, precipitates, and dendrite shape [11]. In addition to this, it can simulate 

several grains at the same time by applying multi-phase field models. Microstructure modelling necessitates the 

use of thermal models since these models supply the microstructure model with the necessary inputs of 

temperature,rate of cooling, and temperature gradient respectively. A more accurate determination of the rate of 

cooling and the temperature gradient can lead to an improvement in the microstructure’s predictability. Fig.3 

presents a chart that contrasts with the different models concerning both their length scales and their degrees of 

precision. Because of the reduced length scale, the required simulation time step is also less, which results in a 

significant increase in the amount of data collected [12]. Models with greater accuracy typically have a greater 

number of variables and equations to solve, which necessitates the utilization of a greater quantity of processor 

resourcesIn most cases, the size that can be accurately simulated by a model is constrained by its accuracy, 

which in turn is a function of the length scales and time steps used in the model.Two different approaches can be 

taken when it comes to linking the combining the microstructure model with the macro thermal model[13]. The 

models might be weakly connected, which means that the thermal model will be simulated first, and then the 

thermal history can be utilized as an input to the microstructure model [9]. Another approach is to tightly couple 

the two models and run them both at the same time in such a way that the data is exchanged and the models 

interact with one another. Although heavily coupled simulations have the potential to produce more accurate 

results, they take significantly more time to run. 

 

 
Fig. 3. Schematic diagram that compares several models regarding length scale and accuracy [8]. 
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c. Comparison of the Techniques used to Model Microstructure 

In most cases, CFD models are only able to simulate a single melt track, however, FEM models can 

take into consideration multiple melt tracks at the same time. Whereas CA and KMC models can replicate the 

entire grain structure, PFM models can only simulate a small number of dendrites. In contrast to the other 

models, the PFM not only generates realistic dendritic structures but also takes into account the distribution of 

solutes among the dendrite arms.Both KMC and CA models ignore details such as the concentration of solutes 

and the morphology of dendrites. Information such as the grain width and aspect ratio can be obtained from 

either model. One key distinction is that CA models take into account the crystallographic development 

direction that is most liked by metals. As the preferred direction and the direction of the temperature gradient 

both influence the direction in which the crystal grows and the rate at which it grows, the grain size and aspect 

ratio that the KMC calculates may not be accurate. To determine the rate of solidification in the favoured 

dendritic crystallographic direction, CA makes use of the theory of solidification, which results in CA models 

having a higher level of accuracy than KMC models. 

 

III. CLASSIFICATIONS OF MACHINE LEARNING FOR ADDITIVE MANUFACTURING 

Machine Learning (ML) is a method that is used in artificial intelligence. It is a technique that enables a 

machine to train automatically how to generate predictions even though it has not been explicitly coded to do 

so.The goal of ML is to accomplish a task through the processes of learning and analyzing data from a given 

dataset [14].The field of ML can be partitioned into three distinct subfields: reinforcement, supervised, 

and unsupervised learning respectively.  Throughout the process of reinforcement learning, the model can 

involve in conversation with its environments to acquire knowledge and select those behaviours most likely to 

result in the highest possible rewards [15]. In supervised learning, the algorithm discovers associations among 

features of interest by utilizing unlabeled data to train itself, while in unsupervised learning, the algorithm learns 

from training data that has been labelled to assist in the prediction of outcomes. The development of an ML 

system necessitates careful consideration during the process of selecting an acceptable ML algorithm [16]. This 

is because the correctness of the outcome is significantly impacted by the algorithm used. No one algorithm can 

solve all of a problem’s complexities because each algorithm offers its own set of benefits when applied to a 

particular setting. 

The following are some categories that can be used to classify the most common ML techniques used 

in mechanical engineering: regression, classification and clustering,and estimation [17]. In particular, 

regression, classification and clustering algorithms are the ones that are used the most when attempting to 

predict material properties [18]. The primary operations of ML can be broken down into the following 

categories: the compilation of data, the selection of descriptors and algorithms, the forecasting of models, and 

the implementation of the models Fig. 4 depicts various ML techniques that are often used to solve challenges 

encountered in Engineering.The gathering of experimental data, the prediction of desirable qualities, and the 

experimental validation of those predictions are the three stages that make up a full cycle of predicting the 

mechanical properties and behaviour of a structural component. The utilization of a prediction model is the key 

concept behind the prediction of the behaviour of materials and mechanical properties. Both numerical 

simulation and ML deal with models, hence they are related to one another.Although during simulation, the 

precise values of the inputs to the random variables are unknown; yet, the modelling itself is known with utmost 

precision, while in ML, the model being trained on is unknown before the training process begins, however, the 

inputs are known. The incorporation of simulation into ML can be carried out with applications in the fields of 

engineering and natural science.To be more specific, the results that were obtained from simulations can be 

included in a wide variety of ML elements (e.g., training data, algorithm, and final hypothesis). Enhancing the 

accuracy of the training data is the most typical approach taken when incorporating the findings of simulations 

into ML [19]. For example, the findings of the simulation were utilized as training data to predict mechanical 

strength. ML algorithms can learn from their prior numerical findings. Both experimental data and the results of 

numerical simulations can be used as data sources for MLsystems. 
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Fig. 4. Machine learning techniques used to solve challenges encountered in engineering. 

 

A high-level look at the classification of ML in AM. The manufacturing of an AM-based product can 

be broken down into four primary categories: the design phase, the act of printing itself, the stage after 

processing, also known as post-processing, and the part assessment stage [20]. Fig. 5 illustrates the most 

important aspects of these phases and shows how various ML approaches can be utilized at each stage.The AM 

process begins with the creation of a computer-aided design model and the AM printed parts' inspection 

concludes the processing chain. 

 

Fig. 5. Classification of machine learning to various aspects of the additive manufacturing process. 

 

IV. APPLICATION OF MACHINE LEARNING FOR ADDITIVE MANUFACTURING 

AM uses MLfor process optimization, mechanical behaviour prediction, and defect identification. They 

typically use ML to tune AM settings with property requirements. 

a. Application of Machine Learning for Prediction of Mechanical Behaviour. 

Although there are techniques, like finite element analysis, which have the potential to predict the 

development of the thermal field at each given point, these techniques are likely to experience severe disparities 

with the research results from the experiment as a result of the simplifying assumptions used [21]. Previous 

research efforts have investigated whether or not it is possible to use ML techniques to anticipate the evolution 

of a thermal field at every given position in the structural components [18].In this section of the review, the 

primary emphasis is placed on the application of ML approaches to the study of the development of the thermal 

field and its influence on the functionality of components that have been printed. Since the parameters of the 

printing process can have a substantial impact on the functionality of additively made parts, it is helpful to 

optimize and predict these printing parameters to improve the performance of components.  

Metallic bonding is predominant in both metals and alloys made from them. A variety of procedures 

make it possible to exert influence over the microstructure and atomic arrangement of material. Because the 

material's microstructure has such a significant impact on its properties, a broad concept is required to properly 

evaluate the particular microstructural feature that is under investigation. Understanding the links between 

microstructure and mechanical characteristics is essential for maximizing the mechanical performance of 

metallic components. This comprehension is linked to the connection that exists between the microstructure and 

the mechanical properties of the material.A description of the microstructure for engineering materials includes 

the types of phases that are present, and their grain size, as well as a breakdown of the structure, as well as the 

shape and size distributions of the grains. The ultimate qualities of the material are, in many instances, 

determined by the microstructural characteristics of the material, such as point defects, dislocations, as well as 

grain size are extremely important components. [22]. The impact that a material's microstructure has on its 

properties is analyzed and summarized in Table 1. 
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Table 1. The influence of microstructure on the qualities of the parts. 

Qualities Influence of Microstructure 

Mechanical (tensile strength, ductility, hardness, etc.) High 

Electrical (electrical conductivity, etc.) Low 

Thermal (dimensional stability, melting point, etc.) Low 

Chemical (corrosion resistance, surface tension, etc.) Low 
 

Mechanical stresses such as tensile, compressive, and shear have a direct influence on the 

microstructure of metallic structural elements, as well as the integrity of the metal itself. The consolidation 

behaviour of the pieces can be significantly affected by microstructural alterations. There are a wide variety of 

potential microstructures that may be found in metal materials. Depending on the dynamic loading, any one of 

these microstructures could result in macrostructural damage and, as a direct consequence, restrict the lifetime 

of the material. Therefore, the investigation of microstructures is a very significant matter. Various methods of 

characterization have been put to use over time to investigate part microstructures. Recent research that was 

published in [23] analyses how the postprocessing of AM-printed objects affects their microstructure as well as 

their thermal characteristics. There is a correlation between a number of the material's microstructural 

characteristics and its mechanical qualities. For example, grain size, texture, phase transitions, as well as the 

volume percentage, shape, and size of particles. It is crucial to highlight that ML approaches have been 

successfully applied to forecast certain behaviours, features, and fatigue lifetimes of the AM-printed 

components. PDF and DED are the two processes of AM that see the most extensive application and are used 

for printing metal products. PBF is a multi-step process that may be broken down into two independent sub-

processes: electron beam melting (EBM) and selective laser melting (SLM). DED techniques can either 

utilizewire arc, electron beam, or Laser as the source of heat. Table 2 presents techniques of ML used in a 

variety of applications within the domain of AM. 

 

Table 2.  Techniques of machine learning applied across a variety of AM domains. 
AM 

Techniques 

Metal ML Methods Drive Ref. 

SLM Steel MLP The varied stages at which the condition of melting can be found. [24] 

SLM AlSi10Mg SVM An analysis of the qualities possessed by the AM powder [25] 

EBM CoCr alloy SVM The development of flowcharts for various processes. [26] 

DED Cu MLP Theoretical modelling of the bead's three-dimensional geometry. [27] 

Laser DED Steel BPNN, LS-
SVM 

Predict the depositing height of printed parts [28] 

DED Steel SVM Prediction of the exactitude of the building construction process. [28] 
 

b. Application of Machine Learning for Optimization of Additive Manufacturing Process Parameters. 

The past few years, it has seen a significant rise in the number of times that AM has been used in the 

building and construction industry; therefore, optimizing this procedure has been of utmost importance, and it 

has been a focus of our effort. As a result of this, ML was recently applied to optimize the printing parameters of 

a cement-based substance using a 3D printer. They developed a mathematical model to examine the diffusion 

mechanism of the substance throughout the extrusion process. In addition, they made use of a support vector 

machine that was built using the ML technique to examine the effects that different parameters had on the flow 

process [29]. The network was trained on experimental data, and the results of the proposed method 

demonstrated that the deformation of the print filament is not related to the viscosity of the plastic being used. 

Despite this, the printing speed along with the yield strength of the material stress does have significant impacts, 

most notably on the distortion of the produced filament. Various process parameters play important roles in 

determining the quality of printed parts as well as their overall performance when components are fabricated 

utilizing AM processes.  

As a direct consequence of this, the effects of these characteristics have been the subject of 

investigation, even though experimental methodologies require a significant investment of both time and money. 

The capabilities of ML approaches were demonstrated when compared to other available options for optimizing 

AM parameters [30]. To predict the depth of the melt pool that was produced by the laser powder-bed fusion 

process, a Gaussian process-based model was utilized [31]. For this, scan rate, as well as laser power, were 

regarded to be input variables, while experimental data collected from the printed 316 stainless steel were 

utilized. The accuracy of the model's predictions was analysed, and the results indicated that the model had a 

reasonable overall performance. This was shown by the fact that the model's mean absolute error was not 

unreasonably high. During the process of PBF, an elevated lens was utilized to construct an imaging system that 

can detect the information of both the melt pool, plume, as well as spatter, and this was done to ensure the safety 

of the process as shown in Fig. 6. The characteristics were determined to be extracted based on a better 

understanding of the process so that they could be fed into the typical ML method. To provide further context, a 
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convolution neural network model was applied in the process of locating quality anomalies, and also the results 

showed that the system had an efficiency of 92.7% in terms of location of quality [32].The morphology of the 

melt pool, which includes properties like geometry, continuity, as well as homogeneity, has a considerable 

bearing on the final product's quality when it is printed using the DED method. Therefore, in regard, ML was 

utilized to make predictions regarding the height of the melt pool width as well as depth in several DED 

processes. ML was applied in more recent work to the construction of a data-driven model and the prediction of 

the temperature of the melt pool that was employed in the DED process. 

 

 
Fig. 6.Specifics regarding the design of the powder bed fusion process monitoring[33]. 

 

Precisely, they made use of two different ML strategies known as Extreme Gradient Boosting, and 

Long Short-Term Memory. Both of these algorithms are very scalable and particularly effective when it comes 

to evaluating time-series data. Also, to this, a superalloy composed of Ni was utilized in the production of thin-

walled test coupons, as well as the measurement of the temperature of the melt pool within each layer [34]. The 

findings that were collected demonstrated that both ML algorithms made highly accurate predictions regarding 

the temperature of the melt pool.Similarly, in [35], ML was used in the DED process to identify links between 

both the input parameters of the laser metal deposition technique and the final geometrical parameters of the 

pieces that were produced. This linkage was sought to improve the efficiency of the laser metal deposition 

process. This correlation was sought to improve the quality of the parts. This was done to improve the quality of 

the printed part. The results of the experiments were factored into the training process for the artificial neural 

network, which was carried out in two stages. According to the results that were obtained, Neural network-based 

ML is capable of providing an accurate estimation of the processing parameters that are necessary to print an 

item made of metal that has a specific geometry. 

 

V. CONCLUSION 

The applications using ML in the field of AM are discussed in depth in this review article. The paper 

discusses the most prevalent metal AM processes and their applications. The thermal and microstructural 

modelling of metallic parts and their comparison are also examined. With AM data, ML linkages between 

processes, structures, and properties can be easily created in any direction. ML has been shown to exploit AM 

processes and improve AM production predictability. In general, ML has had a beneficial impact on the 

possibilities of extending AM adoption and boosting its value proposition.While ML has been evolving for 

several decades, the applications of ML in AM sector have only been identified for some years. ML has 

improved AM adoption and value, its applications in AM have just been discovered in recent years, despite its 

decades-long development. The following is the proposed direction for future study. These applications include 

property prediction, quality prediction and evaluation, defect discovery, and geometric deviation control. 

ML models will predict geometry variation depending on the supplied geometry and recommend ways to adjust 

for geometric inaccuracy after training. Yet, this process-microstructure-property map has not utilized all of its 

data. As a result, thisnew research area will focus on data collection and algorithm development. 
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