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ABSTRACT: This paper presents a semi-analytical study of the heat transfer analysis of an MHD fluid flowing 

past infinite vertical porous plate under the influence of variable suction and thermal radiation. The governing 

nonlinear equations of momentum and energy of the physical problem along with the imposed boundary 

conditions are nondimensionalized using nondimensional variables. Employing Adomian decomposition method 

(ADM), the velocity and temperature profiles are solved numerically. The proposed technique requires 

decomposing a given differential operator into linear and nonlinear operators, wherein the linear part is written 

as a decomposition series and the nonlinear part as Adomian polynomials. Successive approximates of the 

profiles are obtained using iterative algorithms which gives the solution as a converging series. Effects of 

magnetic field, suction, permeability, Eckert number, Grashof, Prandtl, radiation and porosity parameters on 

the temperature and velocity profiles are presented graphically and discussed. The result obtained showed the 

pertinent flow parameters have significant influence on the different distributions and validate existing results 

when compared with literature. 
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I. INTRODUCTION 

In Science, Engineering and other technological endeavours, the problem of steady and unsteady 

natural convective flow of a viscous incompressible fluid in a vertical porous plate under the influence of 

variable suction and imposed magnetic field has been extensively studied. In practice, there are three modes of 

heat transfer namely, conduction, convection and radiation which is dependent on the medium of transfer. 

Similarly, convection can be classified into free and forced or natural convections. Natural or forced convection 

results when a buoyancy force occurs owing to temperature and density difference on the fluid thus making a 

hot and less fluid at the bottom of a fluid to rise and replace a cooler and more dense fluid, creating a pattern of 

convection current due to gravity. On the otherhand, when an external force such as fan or pump cause the flow 

of fluid, then the mode of heat transfer is called forced convection. Some of the numerous applications of 

convection heat transfer can be found in oceanic circulation, air cooling, steam turbines, propeller heating in 

aerodynamics, convection ovens, thawing of frozen materials [1]. 

Falodun and Fadugba (2017) considered the effects of heat transfer on an unsteady 

magnetohydrodynamics boundary layer flow of an incompressible fluid moving in a vertical plate. In this study, 

it was assumed the fluid is optically thick and yield to Roseland approximation. The governing physical 
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equations of continuity, momentum and energy equations were non-dimensionalized using non-dimensional 

variables and solved using spectral relaxation method (SRM). The impact of the control parameters such as 

Grashof, Prandtl, radiation and magnetic field parameters on the velocity, temperature and as well as thermal 

boundary layer of the fluid are analysed graphically. The effect of Prandtl number is to decrease the velocity and 

temperature profiles, Grashof number increases the velocity profile, velocity and temperature profiles are 

increased by increase in thermal radiation while magnetic parameter decreases the velocity profile owing to the 

presence of transverse magnetic field. 

Fagbade et al. (2016) have investigated the unsteady heat and mass transfer of a chemically reacting 

fluid past semi-infinite vertical porous plate under the influence of viscous dissipation, thermal radiation, Soret 

and Dufour effects. The fluid is modelled using Roseland approximation to account for the radiative heat loss 

and assumed to be optically thin. Using non-dimensional variables, the governing equations were reduced to 

nonlinear systems of coupled PDEs and solved using successive relaxation method (SRM). The study revealed, 

velocity and temperature profiles increased with increase in Eckert number. While increased thermal radiation 

reduced the temperature distribution in the fluid especially when its cooled 

Hazarika and Jadav (2014) have analysed the effects of variable viscosity and thermal conductivity on 

a magnetohydrodynamics (MHD) free convection flow along a porous vertical plate immersed in a porous 

medium plate with viscous dissipation. Using similarity transformation, the governing boundary layer equations 

are transformed into ordinary differential equations and solved using Runge-Kutta shooting method. Parametric 

study of the effects of variable viscosity, variable thermal conductivity, Magnetic parameter, and Eckert number 

are analysed in table. The finding of this study revealed, viscosity parameter, thermal conductivity, and 

magnetic parameter decreased the velocity but increased the Eckert number. Also, the effect of viscosity 

parameter, magnetic field, and Eckert number is to increase the temperature, whereas thermal conductivity 

decreased the temperature of the system. Similarly, the concentration profiles are retarded in the presence of 

viscosity and thermal conductivity parameters while it is enhanced in the presence of Eckert and magnetic 

parameters.  

The numerical study of the Influence of Soret on the unsteady MHD Kuvshinshiki fluid flow with heat 

and mass transfer past a vertical porous plate with variable suction has been carried out by Idowu et al. (2014). 

The study neglected induced magnetic field but incorporates the viscous-elastic parameter, Soret terms and 

permeability of the medium. The reduced non-dimensionalized governing equations are solved using combined 

implicit finite difference and Crank-Nicolson methods. The influence of various parameters on the velocity, 

temperature, coefficient of Skin-friction, Nusselt and Sherwood numbers are analysed and presented 

graphically. 

Jana et al (2012) investigated the effects of radiation parameter on unsteady MHD free convective flow 

of a viscous incompressible electrically conducting fluid past an oscillatory vertical porous plate embedded in a 

porous medium with oscillatory heat flux under the influence of uniform transverse magnetic field.  The reduced 

equations governing the physical flow are solved analytically. It was observed from the parametric study that, 

the presence of magnetic field significantly impacts the velocity. The fluid velocity near the plate decreases 

when the thermal radiation parameter increased and increase when the suction increases. The suction, radiation 

and Prandtl parameters cause the fluid velocity to increase near the plate and decrease away from it.  

Mangathai et al. (2015) conducted an analytical study of the heat and mass transfer effects on a MHD 

free convection flow over an inclined plate embedded in a porous medium under the influence of thermal 

radiation and chemical reaction. The fluid is assumed to be viscous, incompressible, and electrically conducting. 

The dimensionless equations of mass conservation, momentum and energy are solved analytically with effects 

of physical parameters on velocity, temperature, and concentration fields as well as expressions for Skin 

friction, Nusselt numbers and Sherwood numbers are displayed graphically. 

Using finite difference method analysis, Kishan et al. (2012) have examined the unsteady mixed 

convection flow past a semi-infinite vertical permeable moving plate with heat and mass transfer with radiation 

and viscous dissipation. The implicit finite- difference scheme and Crank-Nicolson methods which are 

unconditionally stable is employed to solve the dimensionless equations with graphically representations 

depicting the effects of model parameters. 

Mohammed and Bhaskar (2013) studied the heat and mass transfer of natural convection over a moving 

vertical plate with internal heat generation and convective boundary conditions under the influence of chemical 

reaction, viscous dissipation and thermal radiation using similarity transformation method. The study assumed 

the hot fluid is in contact with the left surface whilst the cold fluid on the left contains a heat source which 

decayed exponentially. The governing equation are transformed using self-similar variable into systems of 

ordinary differential equations which are solved numerically using fourth order Runge-Kutta iteration technique. 

Variations of velocity, temperature, and concentrations profiles with Biot, Prandtl, buoyancy forces, internal 
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heat generation, thermal radiation, Eckert, chemical reaction, and viscous dissipation numbers are presented 

graphically. 

Reddy et al. (2014) used the combined shooting iteration technique and fourth order Runge-Kutta 

integration scheme to investigate the radiation effects on unsteady MHD free convective heat and mass transfer 

flow past a vertical porous plate embedded in a porous medium with viscous dissipation. The study assumed 

that the vertical porous plate is immersed in a porous medium with time dependent suction in the presence of 

viscous dissipation and induced magnetic field. The velocity, temperature and concentration profiles are 

presented graphically for different values of the physical parameters. Also, skin-friction coefficients, Nusselt 

number and Sherwood numbers are discussed for influence of various model parameters.  

Sharma et al. (2014) conducted a numerical study of viscous dissipation and mass transfer effects on 

unsteady MHD free convective flow along a moving vertical porous plate in the presence of internal heat 

generation and variable suction. It was assumed in this study that the fluid is viscous, incompressible, 

electrically conducting and the plate is non-isothermal and conducting. The effect of the model parameters on 

the different fields are presented in tables and graphs. 

The Adomian decomposition method (ADM) originally developed by George Adomian [11-13]isa 

semi-analytical technique that can be employed to solve wide class of problems whose mathematical models 

involves algebraic, differential, delay differential, integral, integro-differential equations as well another higher 

ODEs and PDEs. In this method, a given differential operator is split into linear and nonlinear operators where 

the linear operator assumed invertible is written as a decomposition series and the nonlinear part as Adomian 

polynomial. The solution to the problem is obtained as the limiting sum of the approximations obtained from the 

recursive scheme. Comprehensive account of Adomian decomposition method and its application to practical 

problems can be found in [14-34]. Subsequent studies have shown that the method is convergent and yield exact 

solution if its exist and an approximate solution when closed form solution is difficult to obtained. [35-37]. The 

principal advantage of this method over semi-analytical methods is that it capable of reducing the computational 

work without affecting the accuracy of the numerical solution. 

The motivation of this present paper is to undertake a semi-analytical approach using Adomian 

decomposition method approach which has not been considered by any of the preceding literatures we have 

considered. The rest of this study is organized as follows: Chapter one gives an in-depth introduction involving 

relevant literatures involving variable suction. In chapter two, the physical problem is formulated along with the 

governing equations of continuity, momentum, and energy. The fundamentals of the Adomian decomposition 

method are exhaustively discussed in Chapter three. Chapter four presents the application of the solution 

technique to the reduced equation. The results and discussion of the pertinent parameters and their influence on 

the velocity and temperature profiles are depicted graphically and discussed in Chapter five, while the 

conclusion is drawn in Chapter six.  
 

II.  FORMULATION OF THE PROBLEM 
A two-dimensional steady, viscous, laminar, and incompressible fluid with heat source flowing past an 

infinite porous plate under the influence of thermal diffusion and thermal radiation is presented. The 𝑥∗ is taken 

in the vertically upward direction along the plate and 𝑦∗ is taken normal to the plane. The fluid and plate are 

initially at the same temperature when 𝑡 = 0, while at 𝑡 > 0, the temperature of the plate is raised to 𝑇𝑤. Let 𝑢∗ 

and 𝑣∗ be the components of the velocity along the 𝑥∗ and 𝑦∗ directions respectively. Since the plate is large, the 

radiative heat fluid is neglected, whereas that along 𝑦∗ is considered. 
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Figure 1. Physical Configuration of the system 

 

III. ASSUMPTIONS OF THE STUDY 
The mathematical equations describing the physical model are based upon the following assumptions 

• The size of the porous plate is large 

• The fluid is electrically conducting 

• The induced magnetic field is negligible 

• Applied magnetics Reynold number is very small 

• There is no applied voltage 

• The radiative heat fluid along the normal direction is negligible 

• Boussinesq approximation is valid 

 

IV. GOVERNING EQUATIONS 

Following [38], the governing equations of the MHD fluid through an infinite vertical porous plate with suction 

is given by 
𝜕𝑢

𝜕𝑡̅
+ 𝑣̅

𝜕𝑇̅

𝜕𝑦̅
=

𝑣

1+𝜆1

𝜕2𝑢

𝜕𝑦̅2 + 𝑔𝛽̅(𝑇̅ − 𝑇∞) −
𝜎𝐵0

2𝑢

𝜌
− 𝑣𝑢̅𝑘̅           (1) 

𝜕𝑇̅

𝜕𝑡̅
+ 𝑣̅

𝜕𝑇̅

𝜕𝑦̅
=

𝑘

𝜌𝑐𝑝
(

𝜕2𝑇̅

𝜕𝑦̅2) +
1

𝜌𝑐𝑝

𝜕𝑞𝑟

𝜕𝑦̅
+

𝑄0

𝜌𝑐𝑝
(𝑇̅ − 𝑇∞)           (2) 

The boundary conditions for the temperature and velocity fields as 

𝑡̅ = 0, 𝑢̅ = 0, 𝑇̅ → 𝑇̅∞for all 𝑦̅ 

𝑡̅ > 0, 𝑢̅ = 0, 𝑇̅ → 𝑇̅𝑤as 𝑦̅ = 0            (3) 

𝑢̅ = 0, 𝑇̅ → 𝑇̅∞as 𝑦̅ → ∞ 

Upon Non-dimensionalization, Eqs. (1)- (2) reduced to the form  
𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑦
=

𝜕2𝑢

𝜕𝑦2 − (𝑀 + 𝐾)𝑢 + 𝐺𝑟𝜃           (4) 

𝜕𝜃

𝜕𝑡
+ 𝑣

𝜕𝜃

𝜕𝑦
=

1

𝑃𝑟

𝜕2𝜃

𝜕𝑦2 + 𝐸𝑐 (
𝜕𝑢

𝜕𝑦
)

2

−
1

𝑃𝑟
(𝑅 − 𝑆)𝜃          (5)

  

Subject to the corresponding boundary condition 

𝑢 = 0, 𝜃 = 1, for 𝑦 = 0 

𝑢 = 0, 𝜃 = 0, as 𝑦 → ∞             (6)

        

V. ADOMIAN DECOMPOSITION METHOD (ADM) 

Suppose a general nonlinear differential equation in operator form as follows 

𝐷[𝑦(𝑥)] = 𝑓(𝑥)             (7)
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where 𝐷 is a nonlinear differential operator comprising both the linear and nonlinear terms, while 𝑓(𝑥) is 

adifferentiable function of 𝑥 

Decomposing the linear term in Eq. (7) into the form 𝐿 + 𝑅, where 𝐿 is the highest order derivative that is 

invertible and 𝑅 is the remainder of the linear term. 

Rewriting Eq. (7) in operator form, we have 

𝐿[𝑦(𝑥)] + 𝑅[𝑦(𝑥)] + 𝑁[𝑦(𝑥)] = 𝑓(𝑥)         

𝐿[𝑦(𝑥)] = 𝑓(𝑥) − 𝑅𝑦[(𝑥)] − 𝑁[𝑦(𝑥)]           (8) 

While 𝑁[(𝑦(𝑥))] is a nonlinear term and 𝑓(𝑥) is the source term. 

Applying the inverse operator 𝐿−1 of both sides of Eq. (8), we obtain 

𝐿−1(𝐿[𝑦(𝑥)]) = 𝐿−1(𝑓(𝑥)) − 𝐿−1(𝑅[𝑦(𝑥)]) − 𝐿−1(𝑁[𝑦(𝑥)]) 

Where 𝐿−1(. ) = ∫ ∫ (. )𝑑𝑥𝑑𝑥
𝑥

0

𝑥

0
     

𝑦(𝑥) = 𝜙0(𝑥) + 𝑔(𝑥) − 𝐿−1𝑅([𝑦(𝑥)]) − 𝐿−1𝑁([𝑦(𝑥)])        (9) 

Where g(𝑥) is the term obtained from integrating the source termand 𝜙0 from the given conditions 

Now rewriting the solution and nonlinear terms as decomposition series of the form 

𝑦(𝑥) = ∑ 𝑦𝑛(𝑥)∞
𝑛=0 and 𝑁(𝑦(𝑥)) = ∑ 𝐴𝑛(𝑥)∞

𝑛=0 ,        (10) 

where the 𝐴𝑛
′𝑠 are the Adomian polynomials obtained using the formula 

𝐴𝑘 =
1

𝑘!

𝜕𝑘

𝜕𝜆𝑘
[𝑁(∑ 𝑦𝑛𝜆𝑛

∞
𝑛=0 )]𝜆=0, 𝑘 = 0,1,2 …      (11) 

The solution of the problem in Eq. (1) is obtain as limit of the decomposing series 

𝑦(𝑥) = lim
𝑛→∞

𝑢𝑛(𝑥)      (12) 

Similarly, the nonlinear term can be determined by an infinite series of the Adomian polynomials. That is,  

𝑁(𝑦0, 𝑦1, 𝑦2, … , 𝑦𝑛) = ∑ 𝐴𝑛
∞
𝑛=0      (13) 

Then the 𝐴𝑛
′𝑠 are obtained from the formula 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛
[𝑁(∑ 𝜆𝑘𝑦𝑘

∞
𝑘=0 )]𝜆=0, 𝑛 = 0,1,2,3                                     (14) 

Using Eq. (14), the first seven Adomian polynomials are given as 

𝐴0 = 𝑁(𝑦0) 

𝐴1 = 𝑦1𝑁′(𝑦0) 

𝐴2 = 𝑦2𝑁′(𝑦0) +
1

2!
𝑦1

2𝑁′′(𝑦0) 

𝐴3 = 𝑦3𝑁′(𝑦0) + 𝑦1𝑦2𝑁′′(𝑦0) +
1

3!
𝑦1

3𝑁′′′(𝑦0) 

𝐴4 = 𝑦4𝑁′(𝑦0) +
1

2
𝑁′′(𝑦0)(2𝑦1𝑦3 + 𝑦2

2) +
1

2
𝑁′′′(𝑦0)𝑦1

2𝑦2 +
1

4!
𝑁(𝑖𝑣)(𝑦0)𝑦1

4 

𝐴5 = 𝑦5𝑁′(𝑦0) +
1

2
𝑁′′(𝑦0)(2𝑦1𝑦4 + 2𝑦2𝑦3) +

1

3!
𝑁′′′(𝑦0)(3𝑦1

2𝑦3 + 3𝑦1𝑦2
2) +

4

4!
𝑁(𝑖𝑣)(𝑦0)(𝑦1

3𝑦2)

+
1

5!
𝑁(𝑣)(𝑦0)𝑦1

5 

𝐴6 = 𝑦6𝑁′(𝑦0) +
1

2!
𝑁′′(𝑦0)(2𝑦1𝑦5 + 2𝑦1𝑦4 + 𝑦3

2)

+
1

3!
𝑁′′′(𝑦0)(3𝑦1

2𝑦4 + 𝑦2
3 + 6𝑦1𝑦2𝑦3) +

1

4!
𝑁(𝑖𝑣)(𝑦0)(4𝑦1

3𝑦3 + 6𝑦1
2𝑦2

2)

+
5

5!
𝑁(𝑣)(𝑦0)𝑦1

4𝑦2 +
1

6!
𝑁(𝑣𝑖)(𝑦0)𝑦1

6 

𝐴7 = 𝑦7𝑁′(𝑦0) +
1

2!
𝑁′′(𝑦0)(2𝑦1𝑦6 + 2𝑦2𝑦5 + 2𝑦3𝑦4)

+
1

3!
𝑁′′′(𝑦0)(3𝑦1

2𝑦5 + 3𝑦1𝑦3
2 + 3𝑦3𝑦2

2 + 6𝑦1𝑦2𝑦4)

+
1

4!
𝑁(𝑖𝑣)(𝑦0)(4𝑦1

3𝑦4 + 12𝑦1
2𝑦2𝑦3 + 4𝑦1𝑦2

3)

+
1

5!
𝑁(𝑣)(𝑦0)(5𝑦1

4𝑦3 + 10𝑦1
3𝑦2

2) +
1

6!
𝑁(𝑣𝑖)(𝑦0)𝑦1

5𝑦2 +
1

7!
𝑁(𝑣𝑖𝑖)(𝑦0)𝑦1

7 
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𝐴8 = 𝑦8𝑁′(𝑦0) +
1

2!
𝑁′′(𝑦0)(2𝑦1𝑦7 + 2𝑦2𝑦6 + 2𝑦3𝑦5 + 𝑦4

2)

+
1

3!
𝑁′′′(𝑦0)(3𝑦1

2𝑦6 + 3𝑦4𝑦2
2 + 3𝑦2𝑦3

2 + 6𝑦1𝑦2𝑦5 + 6𝑦1𝑦3𝑦4)

+
1

4!
𝑁(𝑖𝑣)(𝑦0)(4𝑦1

3𝑦5 + 12𝑦1
2𝑦2𝑦4 + 12𝑦1𝑦2

2𝑦3 + 6𝑦1
2𝑦3

2 + 𝑦2
4)

+
1

5!
𝑁(𝑣)(𝑦0)(5𝑦1

4𝑦4 + 20𝑦1
3𝑦2𝑦3 + 10𝑦1

2𝑦2
3)

+
1

6!
𝑁(𝑣𝑖)(𝑦0)(𝑦1

5𝑦3 + 15𝑦1
4𝑦2

2) +
7

7!
𝑁(𝑣𝑖𝑖)(𝑦0)𝑦1

6𝑦2

+
1

8!
𝑁(𝑣𝑖𝑖𝑖)(𝑦0)𝑦1

8 

Putting Eq. (10) into Eq. (9), we obtain the solution as decomposition series of the form. 
∑ 𝑦𝑛(𝑥)∞

𝑛=0 = 𝑦(𝑥) = 𝜑0(𝑥) + 𝑔(𝑥) − 𝐿−1𝑅(∑ 𝑦𝑛(𝑥)∞
𝑛=0 ) − 𝐿−1𝑁(∑ 𝐴𝑛(𝑥)∞

𝑛=0 )  (15) 

Where 𝑦0(𝑥) = 𝜙0(𝑥) + 𝑔(𝑥) is the zeroth component of 𝑦𝑛(𝑥) 

The subsequent members of the series are obtained recursively using 

𝑦𝑘+1 = −𝐿−1𝑅(𝑦𝑘(𝑥)) − 𝐿−1(𝐴𝑘(𝑥)), 𝑘 ≥ 0     (16) 

Then exact solution of the problem is the limit of the recursive relation 

𝑦(𝑥) = lim
𝑛→∞

∑ 𝑦𝑘(𝑥)𝑛
𝑘=0         (17) 

 

VI. SOLUTION PROCEDURE VIA ADM 

Rearranging Eqs. (4) and (5) subject to the appropriate boundary conditions, we get 
𝜕2𝑢

𝜕𝑦2 =
𝜕𝑢

𝜕𝑡
+ 𝑣

𝜕𝑢

𝜕𝑦
+ (𝑀 + 𝐾)𝑢 − 𝐺𝑟𝜃        (18) 

𝜕2𝜃

𝜕𝑦2 = 𝑃𝑟 [
𝜕𝜃

𝜕𝑡
+ 𝑣

𝜕𝜃

𝜕𝑦
− 𝐸𝑐 (

𝜕𝑢

𝜕𝑦
)

2

] + (𝑅 − 𝑆)𝜃       (19)

  

Writing Eqs. (7) and (8) in operator form gives 

𝐿1𝑢 = 𝐿𝑡𝑢 + 𝑣𝐿𝑦 + (𝑀 + 𝐾)𝑢 − 𝐺𝑟𝜃           (20) 

𝐿2𝜃 = 𝑃𝑟[𝐿𝑡𝜃 + 𝑣𝐿𝑦𝜃 − 𝐸𝑐𝑁𝑢] + (𝑅 − 𝑆)𝜃       (21)

  

Where the differential operators 𝐿1, 𝐿2, 𝐿𝑡 and 𝐿𝑦 are defined as follows 

𝐿1(. ) = 𝐿2(. ) =
𝜕2

𝜕𝑦2 , 𝐿𝑡 =
𝜕

𝜕𝑡
, 𝐿𝑦 =

𝜕

𝜕𝑦
            (22) 

Assuming the inverse operators, 𝐿𝑖(𝑖 = 1,2), 𝐿𝑡 and 𝐿𝑦 exists and defined by  

𝐿1
−1(. ) = 𝐿2

−1(. ) = ∫ ∫ (. )𝑑𝑦𝑑𝑦, 𝐿𝑡
−1(. ) = ∫ (. )𝑑𝑡, 𝐿𝑦

−1(. ) = ∫ (. )𝑑𝑦
𝑦

0

𝑡

0

𝑦

0

𝑦

0
      (23) 

Applying the operators, 𝐿1
−1 and 𝐿2

−1 on Eqs. (9) and (10) 

𝑢(𝑦, 𝑡) = 𝑢(0, 𝑡) + 𝑦𝑢′(0, 𝑡) + 𝐿1
−1[𝐿𝑡𝑢 + 𝑣𝐿𝑦𝑢 + (𝑀 + 𝑘)𝑢 − 𝐺𝑟𝜃]      (24)

  

𝜃(𝑦, 𝑡) = 𝜃(0, 𝑡) + 𝑦𝜃′(0, 𝑡) + 𝑃𝑟𝐿2
−1[𝐿𝑡𝜃 + 𝑣𝐿𝑦𝜃 − 𝐸𝑐𝑁𝑢] + 𝐿2

−1(𝑅 − 𝑆)𝜃    (25) 

Where 𝑁𝑢 = ∑ 𝐴𝑛
∞
𝑛=0  is called a nonlinear term and 𝐴𝑛 are the special Adomian polynomials. Subsequent terms 

of this polynomials can be obtained using the formula. 

𝐴𝑛 =
1

𝑛!
[

𝑑𝑛

𝑑𝜆𝑛 (𝑁(∑ 𝜆𝑘𝑢𝑘
𝑛
𝑘=0 ))]

𝜆=0
, 𝑛 = 0,1,2,3       (26) 

By Adomian decomposition, we decompose the independent variables as an infinite series 

𝑢 = ∑ 𝑢𝑛(𝑦, 𝑡)

∞

𝑛=0

 

𝜃 = ∑ 𝜃𝑛(𝑦, 𝑡)∞
𝑛=0           (27) 

Applying Eq. (15) into Eqs. (24) and (25), and exerting the boundary conditions, we have the equivalent form 

∑ 𝑢𝑛(𝑦, 𝑡)∞
𝑛=0 = 𝛼𝑦 + 𝐿1

−1 [(𝐿𝑡 + 𝑣𝐿𝑦 + (𝑀 + 𝑘)) ∑ 𝑢𝑛(𝑦, 𝑡)∞
𝑛=0 − 𝐺𝑟 ∑ 𝜃𝑛(𝑦, 𝑡)∞

𝑛=0 ]   (28) 

∑ 𝜃𝑛(𝑦, 𝑡)∞
𝑛=0 = 1 + 𝛽𝑦 + 𝑃𝑟𝐿2

−1[(𝐿𝑡 + 𝑣𝐿𝑦) ∑ 𝜃𝑛(𝑦, 𝑡)∞
𝑛=0 − 𝐸𝑐𝑁𝑢] + 𝐿2

−1(𝑅 − 𝑆) ∑ 𝜃𝑛(𝑦, 𝑡)∞
𝑛=0   (29) 

Matching both sides of Eqs. (28) and (29), we obtain 

Where 𝑢0(𝑦, 𝑡) = 𝛼𝑦 

𝜃0(𝑦, 𝑡) = 1 + 𝛽𝑦           (30) 

The recursive algorithms for both equations become 
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𝑢𝑘+1(𝑦, 𝑡) = 𝐿1
−1 [(𝐿𝑡 + 𝑣𝐿𝑦 + (𝑀 + 𝑘)) 𝑢𝑘 − 𝐺𝑟𝜃𝑘]      (31)

  

𝜃𝑘+1(𝑦, 𝑡) = 𝑃𝑟𝐿2
−1[(𝐿𝑡 + 𝑣𝐿𝑦)𝜃𝑘 − 𝐸𝑐𝐴𝑘] + 𝐿2

−1(𝑅 − 𝑆)𝜃𝑘      (32) 

𝑁𝑘+1 = 𝐿2
−1(∑ 𝐴𝑘

∞
𝑛=0 ) for 𝑘 ≥ 0     

𝑢1(𝑦, 𝑡) = 𝐿1
−1 [(𝐿𝑡 + 𝑣𝐿𝑦 + (𝑀 + 𝐾)) 𝑢0 − 𝐺𝑟𝜃0]       (33) 

𝜃1(𝑦, 𝑡) = 𝑃𝑟𝐿2
−1[(𝐿𝑡 + 𝑣𝐿𝑦)𝜃0 − 𝐸𝑐𝐴0] + 𝐿2

−1(𝑅 − 𝑆)𝜃0      (34)

  

𝑁1 = 𝐿2
−1(∑ 𝐴0

∞
𝑛=0 ),  for 𝑘 ≥ 0  

Evaluating Eqs. (33) and (34) using (30), the result in explicit form become 

𝑢1(𝑦, 𝑡) =
1

2
𝑦2(−Gr + 𝑣𝛼) +

1

3
𝑦3(

𝐾𝛼

2
+

𝑀𝛼

2
−

Gr𝛽

2
)       (35) 

𝜃1(𝑦, 𝑡) =
1

2
Pr𝑦2(−Ec𝛼2 + 𝑉𝛽) + (𝑅 − 𝑆)(

𝑦2

2
+

𝑦3𝛽

3
)      (36) 

Similarly, the second approximates of the profiles gives 

𝑢2(𝑦, 𝑡) =
1

2
𝑉𝑦2𝛼 + 𝑦5(

𝐾2𝛼

15
+

2𝐾𝑀𝛼

15
+

𝑀2𝛼

15
−

Gr𝐾𝛽

15
−

Gr𝑀𝛽

15
−

Gr𝑅𝛽

15
+

Gr𝑆𝛽

15
) + 𝑦4(−

Gr𝐾

8
−

Gr𝑀

8
−

Gr𝑅

8
+

Gr𝑆

8
+

𝐾𝑉𝛼

8
+

𝑀𝑉𝛼

8
+

1

8
EcGrPr𝛼2 −

1

8
GrPr𝑉𝛽)        (37) 

𝜃2(𝑦, 𝑡) = 𝑦7(−
1

105
Ec𝐾2Pr𝛼 −

2

105
Ec𝐾𝑀Pr𝛼 −

1

105
Ec𝑀2Pr𝛼 +

1

105
EcGr𝐾Pr𝛽 +

1

105
EcGr𝑀Pr𝛽 +

1

105
EcGrPr𝑅𝛽 −

1

105
EcGrPr𝑆𝛽) + 𝑦6(

1

48
EcGr𝐾Pr +

1

48
EcGr𝑀Pr +

1

48
EcGrPr𝑅 −

1

48
EcGrPr𝑆 −

1

48
Ec𝐾Pr𝑉𝛼 −

1

48
Ec𝑀Pr𝑉𝛼 −

1

48
Ec2GrPr2𝛼2 +

1

48
EcGrPr2𝑉𝛽) + 𝑦5(

1

15
𝑅(𝑅 − 𝑆)𝛽 +

1

15
𝑆(−𝑅 + 𝑆)𝛽 +

1

15
Pr𝑅𝑉𝛽 −

1

15
Pr𝑆𝑉𝛽) + 𝑦4(

1

8
𝑅(𝑅 − 𝑆) +

1

8
𝑆(−𝑅 + 𝑆) +

Pr𝑅𝑉

8
−

Pr𝑆𝑉

8
−

1

8
EcPr𝑉𝛼 −

1

8
EcPr(𝑅 − 𝑆)𝛼2 −

1

8
EcPr2𝑉𝛼2 +

1

8
Pr(𝑅 − 𝑆)𝑉𝛽 +

1

8
Pr2𝑉2𝛽)         (38) 

The three-term approximation is obtained using the partial sum 

𝑢(𝑦, 𝑡) = ∑ 𝑢𝑛(𝑦, 𝑡),3
𝑘=0  and𝜃(𝑦, 𝑡) = ∑ 𝜃𝑛(𝑦, 𝑡)3

𝑘=0        (39) 

𝑢(𝑦, 𝑡) = 𝑦𝛼 +
1

2
𝑉𝑦2𝛼 + 𝑦2(−

Gr

2
+

𝑉𝛼

2
) + 𝑦3(

𝐾𝛼

3
+

𝑀𝛼

3
−

Gr𝛽

3
) + 𝑦5(

𝐾2𝛼

15
+

2𝐾𝑀𝛼

15
+

𝑀2𝛼

15
−

Gr𝐾𝛽

15
−

Gr𝑀𝛽

15
−

Gr𝑅𝛽

15
+

Gr𝑆𝛽

15
) + 𝑦4(−

Gr𝐾

8
−

Gr𝑀

8
−

Gr𝑅

8
+

Gr𝑆

8
+

𝐾𝑉𝛼

8
+

𝑀𝑉𝛼

8
+

1

8
EcGrPr𝛼2 −

1

8
GrPr𝑉𝛽)   (40) 

𝜃(𝑦, 𝑡) = 1 + 𝑦𝛽 +
1

2
Pr𝑦2(−Ec𝛼2 + 𝑉𝛽) + (𝑅 − 𝑆)(

𝑦2

2
+

𝑦3𝛽

3
) + (𝑅 − 𝑆)(

𝑅𝑦4

8
−

𝑆𝑦4

8
−

1

8
EcPr𝑦4𝛼2 +

1

8
Pr𝑉𝑦4𝛽 +

1

15
𝑅𝑦5𝛽 −

1

15
𝑆𝑦5𝛽) + Pr(

1

8
𝑅𝑉𝑦4 −

1

8
𝑆𝑉𝑦4 +

1

48
EcGr𝐾𝑦6 +

1

48
EcGr𝑀𝑦6 +

1

48
EcGr𝑅𝑦6 −

1

48
EcGr𝑆𝑦6 −

1

8
Ec𝑉𝑦4𝛼 −

1

48
Ec𝐾𝑉𝑦6𝛼 −

1

48
Ec𝑀𝑉𝑦6𝛼 −

1

105
Ec𝐾2𝑦7𝛼 −

2

105
Ec𝐾𝑀𝑦7𝛼 −

1

105
Ec𝑀2𝑦7𝛼 −

1

8
EcPr𝑉𝑦4𝛼2 −

1

48
Ec2GrPr𝑦6𝛼2 +

1

8
Pr𝑉2𝑦4𝛽 +

1

15
𝑅𝑉𝑦5𝛽 −

1

15
𝑆𝑉𝑦5𝛽 +

1

48
EcGrPr𝑉𝑦6𝛽 +

1

105
EcGr𝐾𝑦7𝛽 +

1

105
EcGr𝑀𝑦7𝛽 +

1

105
EcGr𝑅𝑦7𝛽 −

1

105
EcGr𝑆𝑦7𝛽)       (41) 

Using the imposed boundary conditions, 𝑢(0) = 0 and 𝜃(0) = 1 at infinity we obtain the values of 𝛼 and 𝛽. 

Putting the obtain values into Eqs. (39) and (40), we get the distributions of the fluid flow. 

 

VII. RESULTS 

In this section, we present the graphical results of the numerical simulations carried out on the fluid distributions 

using Maple 22. 
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        Figure 1. Effect of varying Grashof number (𝐺𝑟) on the velocity profile  

                  and constant values of 𝑉 = 2, 𝑀 = 2, 𝐾 = 1 

 

 
              Figure 2. Effect of suction (𝑉) on velocity profile and other values of 

 𝐺𝑟 = 0.71, 𝑀 = 0, 𝐾 = 1 
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      Figure 3. Effect of variation of Magnetic parameter (𝑀) on velocity  

profile for constant values of 𝑉 = 2, 𝐺𝑟 = 0.71, 𝐾 = 1 

 

 
                             Figure 4. Effect of permeability parameter (𝐾) on velocity profile for  

Constant values of 𝑉 = 2, 𝐺𝑟 = 0.71, 𝑀 = 2 
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                  Figure 5. Influence of Prandtl number,(Pr) on the velocity profile for  

   Constant values of 𝐸𝑐 = 0.1, 𝑅 = 3, 𝑆 = 1, 𝑉 = 0.3 

 

 
                           Figure 6. Effect of Radiation parameter, (𝑅)on velocity profile for constant 

        values of 𝑃𝑟 = 0.71, 𝑅 = 3, 𝑆 = 1, 𝑉 = 0.3 
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               Figure 7. Influence of Prandtl number, (𝑃𝑟) on temperature profile 

 for constant values of 𝑃𝑟 = 0.71, 𝐸𝑐 = 0.1, 𝑆 = 2, 𝑉 = 1 

 

 
                         Figure 8. Influence of heat source, (𝑆)on temperature profile for constant 

                                  values of 𝑃𝑟 = 0.71, 𝐸𝑐 = 0.1, 𝑅 = 3, 𝑉 = 0.3 
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                  Figure 9. Effect of suction parameter, (𝑉) on temperature profile for 

        constant values of 𝑃𝑟 = 0.71, 𝐸𝑐 = 0.1, 𝑅 = 3, 𝑆 = 1 

 

 
                  Figure 10. Effect of radiation parameter, (𝑅) on temperature profile and  

                  constant values of 𝑃𝑟 = 0.71, 𝐸𝑐 = 0. 1, 𝑉 = 4, 𝑆 = 1 
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            Figure 11. Effect of Eckert number, (𝐸𝑐) on temperature profile and  

Constant values of 𝑃𝑟 = 0.71, 𝑅 = 3, 𝑉 = 4, 𝑆 = 1 

 
VIII. DISCUSSION OF RESULTS. 

Figure 1. depicts the variation of Grashof number,𝐺𝑟 with the velocity profile. The findings shows that 

both the velocity and temperature increase with an increase in the Grashof number. Also, the peak point of the 

curve increases rapidly near the centre of the porous plate as Grashof increases and finally decay to the free 

stream velocity. 

Figure 2. shows the influence of the suction parameter on the velocity profile. It is observed, increase in 

suction parameter leads to both increase in the velocity and temperature profiles of the fluid. The effect of 

Hartmann number on the velocity profile I displayed in figure 3, the result showed, increase in magnetic field 

parameter lead to a decrease in the velocity of the fluid owing to the presence of Lorentz force acting on the 

fluid. 

Figure 4 display the impact of the permeability parameter on the velocity profile. It is observed that, 

due to resistance of the porous medium, increase in permeability lead to a decrease in the velocity distribution of 

the fluid. The variation of Prandtl number, 𝑃𝑟 on the velocity profile is depicted in figure 5. The result indicates 

that, increase in Prandtl number, 𝑃𝑟 cause a decrease in the velocity of the fluid and vice versa. 

Figure 6. illustrates the influence of the Eckert number, 𝐸𝑐 on the temperature profile of the fluid. The 

finding showed, increase in Eckert number increases both velocity and temperature of the fluid across the 

boundary. The depiction of the effect on velocity profile by the radiation parameter is presented in figure 7. It is 

observed that, the temperature profile is decreased when the radiation parameter is increased.  

Figure 8 show the variation of heat source parameter on temperature profile. The study show, increase 

in heat source parameter increases both the velocity and temperature profiles of the fluid. The influence of 

suction parameter on the temperature distribution is illustrated in figure 9. The result reveal that, both the 

velocity and temperature profiles increase with increase in the suction parameter.  

 
IX. CONCLUSION 

In this article, an investigation is carried out on the heat transfer analysis of MHD fluid flowing past a vertical 

porous plate in the presence of variable suction using Adomian decomposition method. The approximate 

solutions of the velocity and temperature distributions was obtained using the third term approximation. The 

findings of the study are summarized as follows. 

1. Increase in Prandtl number decreases the velocity and temperature distribution of the fluid. 

2. Positive increase in the Grashof number increases the velocity but decreases the temperature of the fluid 

3. The velocity and temperature profiles decrease with increase in the magnetic or Hartmann number. 

4. The presence of Suction, heat source and Eckert numbers is to increase both velocity and temperature 

profiles of the fluid. 

5. Increase in permeability parameter lead to decrease in the velocity profile of the fluid. 
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