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ABSTRACT : Based on Jumarie′s modified Riemann-Liouville (R-L) fractional calculus and a new 
multiplication, fractional derivative formula of fractional power exponential function is obtained. This formula 

is a generalization of the formula in traditional calculus. The chain rule and product rule for fractional 

derivatives play important roles in this paper. On the other hand, we give some examples to illustrate this 
formula. 
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I. INTRODUCTION 

Fractional calculus is a natural extension of the traditional calculus. In fact, since the beginning of the 

theory of differential and integral calculus, several mathematicians have studied their ideas on the calculation of 

non-integer order derivatives and integrals. However, the application of fractional derivatives and integrals has 
been scarce until recently. In the last decade, fractional calculus are widely used in physics, mechanics, 

dynamics, and mathematical economics [1-6]. But the definition of fractional derivative is not unique. Many 

authors have given the definition of fractional derivative. The commonly used definitions include Riemann-

Liouvellie (R-L) fractional derivative, Caputo definition of fractional derivative, Grunwald Letnikov (G-L) 

fractional derivative, conformable fractional derivative, and Jumarie’s modified R-L fractional derivative [7-10].  

In this article, we obtain the fractional derivative formula of fractional power exponential function 

based on Jumarie type of R-L fractional calculus. A new multiplication plays an important role in this paper. 

And the main methods we used are the chain rule and product rule for fractional derivatives. In fact, the formula 

obtained in this paper is a generalization of the formula in classical calculus. In addition, we give several 

examples to illustrate this formula. 

 

II. DEFINITIONS AND PROPERTIES 
First, we introduce the fractional calculus used in this paper. 

Definition 2.1 ([11]): Suppose that      , and    is a real number. The Jumarie′s modified Riemann-

Liouville (R-L)  -fractional derivative is defined by 
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And the Jumarie type of R-L  -fractional integral is defined by 
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where     is the gamma function.  

Proposition 2.2 ([12]):  Suppose that            are real numbers and        then 
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and 
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              In the following, we introduce the definition of fractional analytic function. 

Definition 2.3 ([13]): Let     , and    be real numbers for all  ,         , and      . If the function 

           can be expressed as an  -fractional power series, i.e.,          
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on some open interval containing   , then we say that           
   is  -fractional analytic at   . Moreover, if 

           is continuous on closed interval       and it is  -fractional analytic at every point in open interval 
     , then    is called an  -fractional analytic function on      . 
              Next, we define a new multiplication of fractional analytic functions. 

Definition 2.4 ([14]): Let      , and    be a real number. If          
   and          

   are two  -

fractional analytic functions defined on an interval containing    , 
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Then we define 
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Equivalently, 
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Definition 2.5: Suppose that          
   and          

   are two  -fractional analytic functions defined 

on an interval containing   . If          
            

    , then we say that          
   is the  

 reciprocal of           
  , and is denoted by            

      . 

Definition 2.6 ([15]): If        and let          
  ,           

   be  -fractional analytic functions 

defined on an interval containing    , 
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The compositions of          
   and          

   are defined by 
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and 
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Definition 2.7 ([15]): Let        If          
  ,          

   are two  -fractional analytic functions 

satisfies 
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Then these two fractional analytic functions are called inverse functions of each other. 

The followings are some fractional analytic functions. 

Definition 2.8 ([15]): If      , and      are real numbers. The  -fractional exponential function is defined 

by 
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The  -fractional logarithmic function           
   is the inverse function of          

    Furthermore, 

the  -fractional sine and cosine function are defined as follows: 
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and 
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Moreover, 
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is called the  -fractional secant function. 
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is the  -fractional cosecant function. 

                                                                 
              

              
                                (19) 

is the  -fractional tangent function. And 
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is the  -fractional cotangent function. 

Theorem 2.9 ([16])：Let      , then 
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Definition 2.10: Let      . If          
  ,          

   are two  -fractional analytic functions. Then 

the  -fractional power exponential function          
            

    is defined by 
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Theorem 2.11: (chain rule for fractional derivatives) ([15]): Suppose that          is a real number, and 

           
            

   are  -fractional analytic functions. Then 
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Theorem 2.12: (product rule for fractional derivatives) ([16]): If          is a real number, and assume 

that           
            

   are  -fractional analytic functions. Then 
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III. RESULTS AND EXAMPLES 

The following is the fractional derivative formula of fractional power exponential function. 

Theorem 3.1: Assume that      , and          
  ,           

   are two  -fractional analytic 

functions defined on an interval containing   . Then the  -fractional derivative of the  -fractional power 

exponential function          
            

   is 
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Proof  By chain rule and product rule for fractional derivatives, we have 
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                                                                                                                                                                     Q.e.d. 

Next, we give some examples to illustrate the above result. 

Example 3.2: Let      , then the  -fractional derivative of             
              

   is 
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Example 3.3: Suppose that      , and       are real numbers, then the   -fractional derivative of  
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Let            
 

      
 

 

       
  , then 
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Therefore, by Eq. (32) 
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Hence,  
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Example 3.4: The  -fractional derivative of   
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IV. CONCLUSION  

In this paper, based on Jumarie type of R-L fractional calculus and a new multiplication, we obtain the 

fractional derivative formula of fractional power exponential function. This formula is a generalization of the 

derivative of power exponential function in classical calculus. The main methods we used are the product rule 

and chain rule for fractional derivatives. In the future, we will continue to use these two methods to study the 

problems in fractional calculus and fractional differential equations. 
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