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ABSTRACT: The MHD Jeffrey-Hamel flow incorporating magnetic field is theoretically investigated using the 

hybrid variational Homotopy perturbation method (VHPM). The strongly nonlinear partial differential 

equations governing the flow in polar coordinates are first converted to an ordinary differential equation using 

the Cauchy-Riemann equation or Stream function formulation. Thereafter, the resulting nonlinear PDEs in the 

governing parameters are then solved for their effects on the geometry of the flow. The Reynold number, 

Hartmann number and angle of inclination have profound influence on the velocity profile of the flow as shown 

in the tables and graphs. The solution obtained confirmed the method is accurate, efficient and agree with those 

in literature. 
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I. INTRODUCTION 

Jefferey-Hamel flow proposed by Jeffery [1] and Hamel [2] in 1915 and 1916 is the flow of steady 

incompressible fluid through a convergent/divergent channel between non-parallel inclined walls from a source 

or sink. The governing equations from this phenomenon are nonlinear, hence analytical solutions are difficult to 

come by. However, using simplifying assumptions, they obtained an exact solution via similarity transform for a 

2-D incompressible where the radial acceleration is in the z-direction. 

This flow has many useful applications in fluid mechanics, civil, environmental, mechanical, and 

biomechanical engineering. Due to these myriads of applications in the industry and academia, several scholars 

have given considerable attention and extended the original study to include different parameters for varying 

values of the Hartmann number and angle of inclination. In recent times, numerical and semi-analytical 

techniques have been preferred to solve several problems for approximate solution. The solutions obtained are 

convergent with high degree of accuracy.  

This problem has been extensively studied and well documented in literature [3-6]. Khidir [7] 

employed spectral-Homotopy perturbation method to the governing equations of Jeffery-Hamel flow. The result 

obtained showed agreement when compared with other semi-analytical methods like ADM HPM, HAM both for 

the convergent and divergent channels. Al-Jawary [8] investigated the problem using three distinct semi-

analytical iterative schemes namely: Temimi-Ansari (TAM), Daftardar-Jafari (DJM) and Banach contraction 

method (BCM). The result showed convergence and computationally elegant. [9-10] have carried out an 

analytical investigation using differential transform method (DTM) incorporating the magnetic parameter and 

nanoparticles. The Adomian decomposition method (ADM) have been used to examine the Jeffery-Hamel flow 

for analytical solution by Ganji [11]. Sheikholeslami [12] studied the Jeffery-Hamel flow in the presence of high 

magnetic field and nanoparticles employing the Adomian decomposition method. The comparison of the error 

between numerical and Adomian decomposition methods for different values of the Hartmann parameter and 

angle showed concurrence. [13-14] utilised the Homotopy Analysis method (HAM) to consider the Jeffery-

Hamel problem with suction or injection for non-parallel walls. [15-16] analysed the problem using the 

Homotopy perturbation method (HPM) and Hermite-Pade approximation to seek analytical solution. Motsa et al 

[17] used Spectral-Homotopy Analysis method (SHAM) to solve the nonlinear equations governing the Jeffery- 
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Hamel problem. The Optimal Homotopy Asymptotic method and Wavelet techniques have been used for the 

analysis for the MHD nonlinear equations governing the Jeffery-Hamel flow by [18-19]. Akinpelu et al [20] 

investigated the same problem using Galerkin weighted residual method. Their study showed, there is close 

agreement between all the methods used. [21] employed the Neutral network optimized techniques to 

investigate the nonlinear equations of Jeffery-Hamel flow for analytical solution. 

In this present article, we study the same problem in the presence of magnetic field using the coupling 

of variational iteration method (VIM) and Homotopy perturbation method (HPM). This to the best of our 

knowledge hasn’t been applied so is novelty. The organization of the study is as follows: Section one takes an 

in-depth look at previous literatures and methods from different academics who have tackle this problem.  The 

mathematical formulation of the fundamentals of the Jeffery-Hamel flow is presented in section two. Section 3 

& 4 gives the basics of the variation iteration method (VIM) and He’s Homotopy perturbation method. The 

coupling of VIM and HPM is presented in section 5. The mathematical procedure to the problem via VHPM is 

contained in section 6 and section 7 takes the results and discussion in tables and graphically.  

 

II. MATHEMATICAL FORMULATION OF JEFFERY-HAMEL FLOW 

We consider a convergent/divergent rigid wall which makes an angle of 2𝛼, where a steady two-

dimensional flow of an incompressible conducting viscous fluid from a source or sink. The walls are divergent 

if 𝛼 > 0 and convergent if 𝛼 < 0. Furthermore, assuming the velocity is to be purely radial, and the flow 

parameter remains unchanged along the 2 −direction. The flow depends on 𝑟 and 𝜃, where 𝑟 and 𝜃 are radial 

and angular coordinates so that the velocity, 𝑣 = (𝑢(𝑟, 𝜃), 0) as shown in Figure 1.  

Following Schlichting [5], the continuity, Navier-Stokes and Maxwell’s equations in polar coordinates are given 

in reduced form as 
𝜌

𝑟

𝜕

𝜕𝑟
(𝑟𝑢(𝑟, 𝜃)) = 0             (1) 

𝑢(𝑟, 𝜃)
𝜕𝑢(𝑟,𝜃)

𝜕𝑟
= −

1

𝜌

𝜕𝑃

𝜕𝑟
+ 𝜐 [

𝜕2𝑢(𝑟,𝜃)

𝜕𝑟2 +
1

𝑟

𝜕𝑢(𝑟,𝜃)

𝜕𝑟
+

1

𝑟2

𝜕2𝑢(𝑟,𝜃)

𝜕𝜃2 −
𝑢(𝑟,𝜃)

𝑟2 ] −
𝜎𝐵0

2𝑢(𝑟,𝜃)

𝜌𝑟2              (2) 

1

𝜌𝑟

𝜕𝑃

𝜕𝜃
−

2𝜐

𝑟2

𝜕𝑢(𝑟,𝜃)

𝜕𝜃
= 0             (3) 

 

 

 
                      Figure 1. Schematic configuration for 2𝐷 Jeffery-Hamel flow with Magnetic Field 

 

Where 𝐵0, 𝑃, 𝜌, 𝜎, 𝜐 denotes electromagnetic induction, pressure of the fluid, density of the fluid, conductivity of 

the fluid and coefficient of kinematic viscosity of the fluid. 

For purely radial flow,  
𝜕𝑢

𝜕𝜃
= 0 we define the flow parameter in the form 

𝑓(𝜃) = 𝑟𝑢(𝑟, 𝜃) 

𝑢(𝑟, 𝜃) =
𝑓(𝜃)

𝑟
              (4) 

Introducing dimensionless parameters as 

𝐹(𝜂) =
𝑓(𝜃)

𝑓𝑚𝑎𝑥
, 𝜂 =

𝜃

𝛼
             (5) 

Plugging Eq. (5) into Eqs. (2) & (3), and eliminate the pressure term, we obtain an ordinary differential equation 

for the normalized function profile, 𝐹(𝜂) 
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𝜕3𝐹(𝜂)

𝜕𝜂3 + 2𝛼𝑅𝑒𝐹(𝜂)
𝜕𝐹(𝜂)

𝜕𝜂
+ (4 − 𝐻𝑎)𝛼2 𝜕𝐹(𝜂)

𝜕𝜂
= 0                (6) 

Subject to the boundary conditions 

𝐹(0) = 1, 𝐹′(0) = 0, 𝐹(1) = 0                         (7) 

Where 𝑅𝑒 is the Reynold’s number defined by 

𝑅𝑒 =
𝑓𝑚𝑎𝑥𝛼

𝜐
=

𝑈𝑚𝑎𝑥𝑟𝛼

𝜐
 (

𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙: 𝛼 > 0, 𝑈𝑚𝑎𝑥 > 0
𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑡 𝑐ℎ𝑎𝑛𝑛𝑒𝑙: 𝛼 < 0, 𝑈𝑚𝑎𝑥 < 0

) 

Where 𝑈𝑚𝑎𝑥  is the velocity at the centre of the channel (𝑟 = 0) and 𝐻𝑎 = √
𝜎𝐵0

2

𝜌𝜐
 is the Hartmann number.  

 

III. HE’S VARIATIONAL ITERATION METHOD (VIM) 

The basic idea of the VIM is as follows 

Consider the ordinary differential equation of the form 

𝐿𝑦 + 𝑁(𝑦) = 𝑓(𝑥),   𝑥 ∈ 𝐼           (8) 

Where 𝐿 and 𝑁 are linear and nonlinear operators respectively, and 𝑓(𝑥) is any given inhomogeneous terms 

defined for 𝑥 ∈ 𝐼  

We defined a correctional functional for Eq. (8) as follows 

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫ 𝜆(𝜏) (𝐿𝑦𝑛(𝜏) + 𝑁(𝑦̃𝑛(𝜏)) − 𝑓(𝜏)) 𝑑𝜏
𝑥

0
              (9) 

Where  𝜆(𝜏) is a Lagrange multiplier obtained through variational theory, 𝑦𝑛(𝑥) is the nth approximation of 

𝑦(𝑥) and 𝑦̃𝑛(𝑥) is a restricted variation meaning 𝛿𝑦̃𝑛(𝑥) = 0 

By imposing the variation of both sides of Eq. (9) and taking the restricted variation we obtained 

𝛿𝑦𝑛+1(𝑥) = 𝛿𝑦𝑛(𝑥) + 𝛿(∫ 𝜆(𝜏)𝐿𝑦𝑛(𝜏)𝑑𝜏
𝑥

0
                         (10) 

𝛿𝑦𝑛+1(𝑥) = 𝛿𝑦𝑛(𝑥) + [𝜆(𝜏)(∫ 𝐿𝑦𝑛(𝜉)𝑑𝜉
𝜏

0
]

𝜏=0

𝜏=𝑥
− ∫ 𝜆1(𝜏)(∫ 𝐿𝛿𝑦𝑛(𝜉)

𝜏

0
)𝑑𝜉

𝑥

0
          (11) 

Now by applying the stationary condition, the value of the Lagrange multiplier, 𝜆(𝜏) can be found. Then the 

successive approximations, 𝑦𝑛(𝑥), 𝑛 = 0,1,2,3 …. Can be found in the form 

𝑦𝑛+1(𝑥) = 𝑦𝑛(𝑥) + ∫ 𝜆(𝜏) (𝐿𝑦𝑛(𝜏) + 𝑁(𝑦𝑛(𝜏)) − 𝑓(𝜏)) 𝑑𝜏
𝑥

0
                        (12) 

The exact solution is then obtained as the limit of the successive approximations from Eq. (12) 

𝑦(𝑥) = lim
𝑛→∞

𝑦𝑛(𝑥) 

 

IV. HOMOTOPY PERTURBATION METHOD (HPM) 

In this section, the fundamentals of the Homotopy perturbation method as proposed by He. J. Huan is discussed 

Consider a functional differential equation of the form 

𝒜(𝑢) − 𝑓(𝑟) = 0, 𝑟 ∈ Ω              (13) 

Subject to the boundary condition 

ℬ (𝑢,
𝜕𝑢

𝜕𝑡
) = 0, 𝑟 ∈ 𝒯           (14) 

where 

𝒜 is a differential operator 

ℬ is a boundary operator 

𝑢(𝑥, 𝑡) is an unknown function 

𝒯 is the boundary of the domain Ω 

𝑓(𝑥, 𝑡) is a known analytic function 

Decomposing the operator, 𝒜 into two parts comprising linear, (ℒ) and nonlinear (𝒩) 

𝒜 = ℒ + 𝒩            (15) 

In view of Eq. (3), we rewrite Eq. (1) in the form 

ℒ(𝑢) + 𝒩(𝑢) − 𝑓(𝑟) = 0                (16) 

Embedding an artificial parameter 𝑝 on Eq. 16) as follows 

ℒ(𝑢) + 𝑝(𝒩(𝑢) − 𝑓(𝑟)) = 0          (17) 

where 𝑝 ∈ [0,1] is the embedding or artificial parameter. 

Next, we construct a Homotopy, ℋ(𝑟, 𝑝): Ω × [0,1] ⟶ ℜ to Eq. (17) that satisfies 

ℋ(𝑟, 𝑝) = (1 − 𝑝)[ℒ(𝑣) − ℒ(𝑢0)] + 𝑝[ℒ(𝑣) + 𝒩(𝑣) − 𝑓(𝑟)] = 0          (18) 

and 

ℋ(𝑟, 𝑝) = ℒ(𝑣) − ℒ(𝑢0) + 𝑝ℒ(𝑢0) + 𝑝[𝒩(𝑣) − 𝑓(𝑟)] = 0                      (19) 

Where 𝑢0(𝑥) is the initial approximation which satisfies the boundary condition. 

Putting 𝑝 = 0 and 𝑝 = 1 into Eq. (19), we obtain the following equations 
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ℋ(𝑟, 0) = ℒ(𝑣) − ℒ(𝑢0)

ℋ(𝑟, 1) = 𝒜(𝑢) − 𝑓(𝑟)
}               (20) 

Clearly as 𝑝 changes monotonically from zero to unity, ℋ(𝑟, 𝑝) changes from 𝑢0(𝑥) to 𝑢(𝑥). This is called 

deformation, whereas the terms ℒ(𝑣) − ℒ(𝑢0) and 𝒜(𝑢) − 𝑓(𝑟) are homotopic to each other. 

Now we consider a power series solution in 𝑝 as follows 

𝑣 = ∑ 𝑝(𝑛)∞
𝑛=0 𝑣𝑛                (21) 

The approximate solution of Eq. (21) can be obtained by setting 𝑝 = 1 

𝑢(𝑥) = lim
𝑝→1

𝑣𝑛 = 𝑣0 + 𝑣1 + 𝑣2 + ⋯         (22) 

Similarly, the nonlinear term, 𝒩(𝑢) can be expressed in He’s polynomial [27] 

𝒩(𝑢) = ∑ 𝑝(𝑚)𝐻𝑚(𝑣0 + 𝑣1 + ⋯ + 𝑣𝑚)∞
𝑛=0                       (23) 

Where 𝐻𝑚(𝑣0 + 𝑣1 + ⋯ + 𝑣𝑚) =
1

𝑚!

𝜕𝑚

𝜕𝑝𝑚
[𝒩(∑ 𝑝𝑘𝑣𝑘

𝑚
𝑘=0 )]𝑝=0, 𝑚 = 0,1,2, …         (24) 

where,  

𝐻0 = 𝒩(𝑢0) 

𝐻1 = 𝑢1𝒩 ′(𝑢0) 

𝐻2 = 𝑢2𝒩 ′(𝑢0) +
1

2
𝒩1

2𝒩 ′′(𝑢0) 

𝐻3 = 𝑢3𝒩 ′(𝑢0) + 𝑢1𝑢2𝒩 ′′(𝑢0) +
1

6
𝒩1

3𝒩 ′′′(𝑢0) 

𝐻4 = 𝑢4𝒩 ′(𝑢0) + (
1

2
𝑢2

2 + 𝑢1𝑢3)𝒩 ′′(𝑢0) +
1

2
𝑢1

2𝑢2𝒩1
3𝒩 ′′′(𝑢0) +

1

24
𝑢4

3𝒩(𝑖𝑣)(𝑢0) 

 

V. VARIATIONAL HOMOTOPY PERTURBATION METHOD (VHPM) 

Consider a functional equation of the form 

ℒ(𝑢) + 𝒩(𝑢) − 𝑓(𝑟) = 0  

According to VIM, we construct a correctional functional of Eq. (16) as follows. 

𝑢𝑛+1(𝑥) = 𝑢𝑛(𝑥) + ∫ 𝜆(𝜉)[ℒ𝑢𝑛(𝜉) + 𝑁𝑢𝑛(𝜉) − 𝑓(𝜉)]𝑑𝜉
𝑥

0
           (25) 

Where 𝜆 is the Lagrange multiplier, ℒ is the integral or differential operator, 𝑁 is the nonlinear operator and 

𝑓(𝑟) is an analytic function 

Now, applying Homotopy we obtain 

∑ 𝑝(𝑛)𝑢𝑛 = 𝑢0(𝑥) + 𝑝 ∫ 𝜆(𝜉)[∑ 𝑝(𝑛)ℒ(𝑢𝑛(𝜉)) + ∑ 𝑝(𝑛)𝒩(𝑢̃𝑛(𝜉))∞
𝑛=0

∞
𝑛=0 ]𝑑𝜉 − ∫ 𝜆(𝜉)𝑓(𝜉)

𝑥

0

𝑥

0
∞
𝑛=0 𝑑𝜉   (26) 

 

VI. ANALYTICAL PROCEDURE VIA VHPM 

In this section, we apply VHPM to the ordinary differential equation in Eq. (6) subject to (7). We procced as 

follows 

Firstly, we rewrite Eq. (6) in the form 
𝜕3𝐹(𝜂)

𝜕𝜂3 + 𝜆𝐹(𝜂)
𝑑𝐹(𝜂)

𝑑𝜂
+ 𝛾

𝑑𝐹(𝜂)

𝑑𝜂
= 0                       (27) 

Where 𝜆 = 2𝛼𝑅𝑒 

𝛾 = (4 − 𝐻𝑎)𝛼2 

The correction functional of Eq. (26) gives the form 

𝐹𝑛+1(𝜂) = 𝐹𝑛(𝜂) + ∫ 𝜆(𝜏) [
𝜕3𝐹(𝜏)

𝜕𝜂3 + 𝛾
𝑑𝐹(𝜏)

𝑑𝜂
+ 𝜆𝐹(𝜂)

𝑑𝐹(𝜏)

𝑑𝜂
] = 0

𝜂

0
                     (28) 

𝐹𝑛+1(𝜂) = 𝐹(0) + 𝜂𝐹′(0) +
𝜂2

2
𝐹′′(0) + ∫ 𝜆(𝜏) [

𝜕3𝐹(𝜏)

𝜕𝜂3 + 𝛾
𝑑𝐹(𝜏)

𝑑𝜂
+ 𝜆𝐹̃(𝜂)

𝑑𝐹̃(𝜏)

𝑑𝜂
] = 0

𝜂

0
              

(28)  

Using the condition in Eq. (7) and the Lagrange multiplier, we obtain 

 𝐹𝑛+1(𝜂) = 1 +
𝜂2

2
𝜎 + ∫

(𝜏−𝜂)2

2
[

𝜕3𝐹(𝜏)

𝜕𝜂3 + 𝛾
𝑑𝐹(𝜏)

𝑑𝜂
+ 𝜆𝐹̃(𝜂)

𝑑𝐹̃(𝜏)

𝑑𝜂
] = 0

𝜂

0
         (29) 

Applying Homotopy perturbation method to Eq. (29), we have 

∑ 𝑝(𝑛)∞
𝑛=0 𝑢𝑛 = 𝐹(0) + 𝑝 ∫

(𝜏−𝜂)2

2
[

𝜕3

𝜕𝜂3
(𝑢0 + 𝑝𝑢1 + 𝑝2𝑢2 + ⋯ ) + 𝛾

𝑑

𝑑𝜂
(𝑢0 + 𝑝𝑢1 + 𝑝2𝑢2 + ⋯ ) +

𝜂

0

𝜆 ∑ 𝑝(𝑛)𝐻𝑛
∞
𝑛=0 ] = 0                (30) 

Where 𝐻𝑛
′𝑠 are the He’s polynomials defined in Eq. (24) 

Equating coefficients of the powers of 𝑝 on both sides of Eq. (30), we have the following expressions 

𝑝(0): 𝑢0 = 1 +
𝜎

2
𝜂2 
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𝑝(1):   𝑢1 = ∫
(𝜏 − 𝜂)2

2
(

𝜕3𝑢0

𝜕𝜂3
+ 𝛾

𝑑𝑢0

𝑑𝜂
+ 𝜆𝐻0)

𝜂

0

 

𝑝(2):   𝑢2 = ∫
(𝜏 − 𝜂)2

2
(

𝜕3𝑢1

𝜕𝜂3
+ 𝛾

𝑑𝑢1

𝑑𝜂
+ 𝜆𝐻1)

𝜂

0

 

𝑝(3):   𝑢3 = ∫
(𝜏 − 𝜂)2

2
(

𝜕3𝑢2

𝜕𝜂3
+ 𝛾

𝑑𝑢2

𝑑𝜂
+ 𝜆𝐻2)

𝜂

0

 

⋮ 

𝑝(𝑛):   𝑢𝑛 = ∫
(𝜏−𝜂)𝑛−1

𝑛−1
(

𝜕3𝑢𝑛−1

𝜕𝜂3 + 𝛾
𝑑𝑢𝑛−1

𝑑𝜂
+ 𝜆𝐻𝑛−1)

𝜂

0
           (31) 

Where  

𝐻0 = 𝑓0𝑓0
′  

𝐻1 = 𝑓0𝑓1
′ + 𝑓1𝑓0

′  
𝐻2 = 𝑓0𝑓3

′ + 𝑓1𝑓2
′ + 𝑓2𝑓0

′  
𝐻3 = 𝑓0𝑓4

′ + 𝑓1𝑓3
′ + 𝑓2𝑓2

′ + 𝑓3𝑓1
′ + 𝑓4𝑓0

′  
𝐻4 = 𝑓0𝑓4

′ + 𝑓1𝑓3
′ + 𝑓2𝑓2

′ + 𝑓3𝑓1
′ + 𝑓4𝑓0

′                         (32) 

The approximate solution of the problem is given by the expression 

𝐹(𝜂) = lim
𝑝⟶1

𝑢𝑛                                      (33) 

Solving Eq. (31) give the iterative solutions for the first, second and third approximates as 

𝐹0(𝜂) = 1 +
𝜎

2
𝜂2 

𝐹1(𝜂) = −
2 𝛼𝑅𝑒𝜎

4!
𝜂4 −

(4 − 𝐻𝑎)𝛼2𝜎

4!
𝜂4 −

2𝛼𝑅𝑒𝜎2

240
𝜂6 

𝐹2(𝜂) = (
𝛼2𝑅𝑒2𝜎

360
+

𝜎𝛼3𝑅𝑒

45
+

1

45
𝜎𝛼2) 𝜂6 + (

𝛼3𝑅𝑒2𝜎2

280
+

(𝛼𝑅𝑒𝜎)2

560
) 𝜂8 + (

𝜎3𝑅𝑒

2700
−

𝜎2(2𝛼𝑅𝑒)3

129600
−

(𝜎𝛼2𝑅𝑒)
2

32400
−

𝜎2𝛼5𝑅𝑒

3240
) 𝜂10 − (

(𝛼𝑅𝑒𝜎)3

95040
+

(𝛼𝑅𝑒)2𝜎3

47520
) 𝜂12 −

𝜎4(𝛼𝑅𝑒)3

2620800
𝜂14            (34) 

The three-term approximate solution for 𝐹(𝜂) is given by 

𝐹(𝜂) = 𝐹0(𝜂) + 𝐹1(𝜂) + 𝐹2(𝜂) + ⋯ 

𝐹(𝜂) = 1 +
𝜎

2
𝜂2−

2 𝛼𝑅𝑒𝜎

4!
𝜂4 −

(4−𝐻𝑎)𝛼2𝜎

4!
𝜂4 −

2𝛼𝑅𝑒𝜎2

240
𝜂6                    (35) 

Imposing the given boundary condition, 𝐹(1) = 0, and setting 𝛼 = 5, 𝑅𝑒 = 500, 𝐻𝑎 = 0 in Eq. (35), we obtain 

the value of the constant, 𝜎 = −4.56.80072132 

Now substituting the value of 𝜎 into Eq. (35), we obtain the concentration profile of the problem. 

 

VII. RESULTS AND DISCUSSION 

In this subsection, we analyse the concentration profile under the influence of angle of contact, Reynold number 

and Hartmann number. In the section hereafter, we present our result in tables and graphs. 

        

Table 1. Comparison between Numerical results and Variational Homotopy 

Perturbation Method 

𝜂 VHPM Solution Numerical Solution 𝐸𝑟𝑟𝑜𝑟 = |𝐹𝑁𝑀 − 𝐹𝑉𝐻𝑃𝑀| 
0 1.0000 1.000000 1.00000 

0.1 1.187830 1.18812 0.00029 

0.2 4.713290 5.70419 0.99090 

0.3 20.4623 20.5120 0.04970 

0.4 63.2448 63.3004 0.05560 

0.5 153.793 152.8791 0.91390 

0.6 318.7690 318.7720 0.00030 

0.7 590.7510 590.7620 0.01100 

0.8 1008.240 1008.50 0.26000 

0.9 615.680 616.800 1.12000 

1.0 2463.410 2463.52 0.11000 

 

Table 2: Comparison of Constant values, 𝝈 for different values 

of α, Ha and Re 

                        𝐻𝑎 = 50 𝐻𝑎 = 100  𝐻𝑎 = 150 

𝑅𝑒 𝛼 𝜎 𝜎 𝜎 

 5 0.03166 o.047244 0.09302 



American Journal of Engineering Research (AJER) 2022 
 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 86 

 

100 

7 0.022514 0.03352 0.065574 

10 0.015707 0.23346 0.045455 

 

200 

3 0.022857 0.026667 0.03200 

6 0.0113636 0.013245 0.015873 

9 0.0075614 0.0088106 0.0105541 

 

 
Figure 1. Velocity profile for constant values of Ha, Re and various 

values of 𝛼 for diverging channel 

 

 
Figure 2. Velocity profile for constant values of Ha, Re and various 

values of 𝛼 for converging channel. 
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Figure 3. Velocity profile for constant values of Ha, 𝛼 and various 

values of 𝑅𝑒 for converging channel 

 

 
Figure 4. Velocity profile for constant values of Ha and 𝑅𝑒 for 

different values of 𝐻𝑎 for converging channel. 

 

 
Figure 5. Velocity profile for constant values of Ha and 𝛼 and various values 

of 𝑅𝑒 for converging channel. 
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Figure 6. Velocity profile for constant values of Ha and 𝛼 and various 

values of 𝑅𝑒 for converging channel 

 

REFERENCES 
[1]. Jeffery, G.B. (1915). The two-dimensional steady motion of a viscous fluid. Philosophical Magazine, volume 6, pp. 455–465. 

[2]. Hamel, G. (1916). Spiral formige Bewegungen Zaher-Flussigkeiten. Jahresber Deutsche Math-Verein, volume 25, pp. 34-60. 

[3]. Rosenhead, L. (1940). The steady two-dimensional radial flow of viscous fluid between two inclined walls, Proceedings of the 
Royal Society A, Volume 175, pp. 436-467. 

[4]. McAlpine, A., Drazin, P.G. (1998). On the spatio-temporal development of small perturbations of Jeffery-Hamel flows. Fluid 

Dynamics Research, Volume 22, no. 3, pp. 123-138. 
[5]. Schlichting, H. (2000). Boundary Layer Theory. McGraw-Hill, New York. 

[6]. White, F.M. (1991). Viscous Fluid Flow, McGraw-Hill, New York. 

[7]. Khidir, A. A. (2014). Spectral-Homotopy Perturbation Method for Solving Governing MHD Jeffery-Hamel Problem. Journal of 
Computational Methods in Physics, Volume 2014, Article ID 512702, 7 pages. 

[8]. Al-Jawary, M.A., Al-Zahraa, J.A.N. (2020). Three Iterative methods for solving Jeffery-Hamel problem. Kuwait Journal of Science, 

47(1), pp. 1-13. 
[9]. Patel, N.D., Ramakanta, M. (2018). Analytical Investigation of Jeffery-Hamel flow with magnetic field by differential transform 

method. International Journal of Advances in Applied Mathematics and Mechanics, 6(1), 1-9, ISSN: 2347-2529. 

[10]. Ganji, D.D., Mohammadreza, A. (2013). Application of Differential transform method on MHD Jeffery-Hamel problem with 
nanoparticle. UP.B. Science Bulletin, Series A, Volume 75, Issue 1, ISSN: 1454-2358. 

 
[11]. Esmaili, Q., Ramiar, A., Alizadeh, E., Ganji, D.D. (2008). An approximation of the analytical solution of the Jeffery-Hamel flow by 

Decomposition method. Physics letters A, 372, 3434-3439. 

[12]. Sheikholeslami, M., D. Ganji, D.D., Ashorynejad, H.R., Roni, H.B. (2012). Analytical Investigation of Jeffery Hamel flow with 
High Magnetic Field and nanoparticle by Adomian Decomposition Method, Applied Mathematics and Mechanics, 33(1), 234-256. 

[13]. Moghimi, S.M., Domairry, G., Soleimani, S. E., Ghasemi, H. B. (2011). Application of 

Homotopy analysis method to solve MHD Jeffery–Hamel flows in non-parallel walls, 
Advances in Engineering Software 42, 108–113 

[14]. Salim, H., Mebarek-Oudina, F., Mohamed, R.S. (2019). Analysis of MHD Jeffery-Hamel flow with suction/Injection. Journal of 

Advanced Research in Fluid Mechanics and Thermal Sciences, 58, Issue 2, 173-186. 
[15]. Moghimi, S.M., Ganji, D.D., Bararnia, H., Hosseini, M., Jalaal, M. (2011). Homotopy perturbation method for nonlinear MHD 

Jeffery–Hamel Problem, Advances in Engineering Software 42, 108–113. Heat Transfer 19 (2006) 181-191. 

[16].  Makinde, O.D., Mhone, P.Y. (2006). Hermite–Pade approximation approach to MHD Jeffery–Hamel flows, Appl. Math. Comput. 
181, 966–972. 

[17]. Motsa, S.S., Sibanda, P., Awad, P., Shateyi, S. (2010). A new Spectral-Homotopy Analysis Method for the MHD Jeffery-Hamel 

problem. Computer and Fluids, 39, 1219-1225. 
[18]. Esmaeilpour, M., Ganji, D.D. (2010). Solution of the Jeffery-Hamel problem by Optimal Homotopy Asymptotic method. 

Computers and Mathematics with Application, 59, 3405-3411. 

[19]. Kumbinarasaiah, S., Raghunathan, K.R. (2021). Numerical solution of the Jeffery-Hamel flow through the Wavelet Technique. 
Heat Transfer, 1-17. 

[20]. Alao, S., Akinola, E.I., Salaudeen, K.A., Oderinu, R.A., Akinpelu, F.O. (2017). On the solution of MHD Jeffery-Hamel flow by 

Weighted Residual methods. International Journal of Chemistry, Mathematics and Physics. Vol-1, Issue-1, May-Jun 2017, ISSN: 
2456-866X. 

[21]. Iftikhar, A., Hira, I., Muhammed, B. (2014). Numerical Solution for Nonlinear MHD Jeffery-Hamel Blood flow problem through 

Neutral Network optimized Techniques. Journal of Applied Environmental and Biological Sciences, 4(7), 33-45. 
 

 

 



American Journal of Engineering Research (AJER) 2022 
 

 
w w w . a j e r . o r g  

w w w . a j e r . o r g  

 

Page 89 

 

 

 
 

 

 
 

 

 


