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A new model describing the column processes
corresponding to higher order of flotation kinetics

Daniela D. Parashkevova
University of Mining and Geology” St. 1. Rilski”, 1700 Sofia, Bulgaria

ABSTRACT:The primary goal of the present paper is to give an extended model of some processes in camera
flotation. This leads to a nonlinear first order system of hyperbolic equations. Such systems correspondence to
the chemical reaction of higher order. From mathematical point of view this means that the system obtained
contains polynomial nonlinearities. First we formulate a mixed problem for the hyperbolic system with
boundary conditions corresponding to the processes on the boundary in the flotation camera. We present the
mixed problem for the hyperbolic system in a suitable operator form and prove an existence of generalized
solution by fixed point method. It is shown of how to reach the solution of the system in question by a sequence
of successive approximations.
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I. INTRODUCTION

Many articles are devoted to the study of flotation processes. Without claiming completeness we note
some of them [1]-[10]. In the present paper we introduce a generalized model describing the column flotation
processes. The creation of this model was inspired by the article [11], where the authors consider the notion
order of flotation kinetics by analogy with the order of the chemical reactions. Description of the processes in
this case leads to a nonlinear first order hyperbolic system of partial differential equations with polynomial
nonlinearities. Such type nonlinearities generate mathematical difficulties which we overcome by using the
method developed in a series of papers [12]- [18].

Here we study the system of first order partial differential equations

oC, (x,t n ] oC. (x.t

% =kCp (X,1)—k,Cg (x,t) =V, %

aCPT(M) =—kCp" (1) +k,Co" (X, 1) +V5 aca—(Xt) &
X

(xt) e D={xt)eR?:(xt)e[0,H]x[0,T]}.

Here the unknown functions are: C, (X,t) is the mineral concentration in the liquid, Cg (X, t) is the mineral
concentration on the bubbles, Kk, and K, are prescribed kinetic constants describing particle transitions from one
phase to another, H >0 isthe height of the camera and [O,T] is prescribed time interval;V, > 0 is a particle
sedimentation rate, V3 >0 -the bubble lifting speed. We note that Vg >>V, (cf.[10]), but unlike some
previous papers we do not neglect V, > 0. The process in the camera are such that V, is directed from top to

bottom, while V the speed of the bubbles is directed upwards. Here we investigate the case N >1, where Nnis
the order of flotation kinetics. In previous papers we have considered the case n=1.
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For system (1) one can formulate the following mixed (initial-boundary value) problem: to find the
unknown concentration functions C,, (X,t) and Cg(X,t) in IT satisfying initial conditions

Cy(x,0)=0, Co(x,0) = C,y. @
where C,, = const. > 0 is a prescribed initial concentration and boundary conditions

Cg;(0,t)=0, C,(0,t)=C,,=const.>0 te[0,T]. (3)

We follow the mathematical methods [12] for investigation of transmission lines and some applications
(cf. also [12]- [18]). We present the mixed problem for the above hyperbolic system in an operator form. By
using a suitable function space, we prove existence theorems for (1) - (3) by fixed point method (cf. [12]).
Finally, we show of how to obtain a sequence of successive approximations tending to the solution of the system
in question.

The system (1) can be rewrite as

Colil) yy, Coll) _y e n(x ) -k,C," (x.1)

ot OX
oC, (x,t oC, (x,t n n
Pa(t )—Vp Pa(x ) =—kCo (X,1) +K,Cy (X,t)

and introducing denotations

oCg(x,t) 0Cgy (x,t)
_{CB(x,t)} w | a w | ,A:{VB 0 } K:{ K, —kz}
TlC.(xt) [ et | aC.(xt) [ x| aC,(xt) 0 -V, -k, Kk,
ot OX

we present the above system in a matrix form

0Cg(X,t) 0Cg(X,t)
ot . |:VB 0 } ox :{ kg —kz} Cg"(x.t)
aCp (x,1) 0 —Vp|laCpxt)| [~ki ko JlCp"(x.1)
ot ox
or
%+ A% = KW. (4)
ot OX

0

Vv
Here the matrix A:{OB is in a diagonal form. Therefore the characteristic roots are
P

A, =Vg, 4, ==V, and we are able to formulate the main problem of the paper.
To solve the hyperbolic system (4) satisfying initial conditions

Cy(x,0)=0, C.(x,0)=C,,=const.>0 xec[0,H] (5)
and boundary conditions

Cs(0,t)=0, C,(0,t)=C,,, te[0,T]; Co(At)=C;,, Co(AT)=C,,, t€[0,T]
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Co (A1) +Cp (A1) = x(t) <1, where & =sup{x(t):t [0, T]}<1.

Il. AN OPERATOR FORMULATION OF THE MIXED PROBLEM
The mixed problem is: to find a solution (CP (x,t),Cq (X,t))of the following system.
Following [12]- [18] we consider the Cauchy problem for the characteristics:

d&/dzr =Vg, £(t) =x foreach (X,t) e D = @, (7;%,t) =Va7 + X =V, (6)
dn/dz ==V, n(t) =x foreach(X,t) e D = @, (7; X,t) = Vo7 + X +V,t. @)

Functions A5 (X,t) =V >0 and 4, (X,t) = -V, < 0 arecontinuousonesandimplyauniquenessto the
leftfrom t of the solution & =gy (t;x,t) of d&/dt=V,, &£(t) =X andrespectively 7 = ¢ (t; X,t) of
dn/dt=-V,, n(t)=x.

Denote by y,(X,t) the smallest value of 7 such that the solution @ (7;X,t) =Vg7 + X =Vt of
(6) still belongs to D and by y,(X,t) — the respective value of 7 for the solution
@ (7;X,1) = Vo7 + X +Vt of (7).

If 7g(X,1)>0 then @g(xp(X,t);x,t)=0 or @g(xgz(X,t);X,t)=H and respectively if
2p(X,1) >0 then @y (x5 (X,1); X, 1) =0 or @, (x-(X,t);X,t) =H . Inourcase

t—— for Vit—x>0 g H=x for Vot+x—H >0
ZB(X't)z VB ZP(X't)z Vp '

0 for Vgt —x<0 0 for Vpot+x—-H <0
Obviously 0 < yg(X,t) <t, 0< yp(X,t) <t.One can easy to see that
@s (T;X,1) =Vt + X =Vt = @5 (0;X,1) =X -Vt ;
@ (7;%,8) = Vo7 + X +Vot = ¢ (0;X,t) =X +V,t.
Introduce the sets
D5 ={(x 1) eD: x5(xt) =0}={(x,t) e D:x-Vt >0},
D,»={(Xx1)€D: zp(xt)=0}={(x,t)eD:Vpt+x-H >0},
Dps ={(x,) €D (X, 1) >0, (2 (X,1);X,t) =V, (Vat —X)/ Vg + XVt =0},

Dyg ={(xt) €D 75(X 1) >0, ¢ (x5 (% 1) X, t) =V, (Vt =X)/ Vg +X-Vet =H } =2,

Dop ={(61) € D: 25 (X,1) >0, g (o (X, 1) X, 1) =V, [t— HV_X]+x+th =o}:@,

P

H-X
Dyp :{(x,t) eD: 7o (X1)>0, (7 (x,1);X,1) :—Vp[t— v ]+x+vpt = H}.
P
Prior to present the mixed problem in operator form we introduce
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Cyo (X, 1) e Dy

CBO(X _VBt)! (X1t) € Din,B { 0’ (X’t) € Din,B

D (Cq, Cp)(x,1) = {(I)OB(CB,CP)(ZB (X1t))’ (X,t) € Dyg )

and
CPO (X +VPt) ’ (X’t) € Din,P

D, (Cg,Cp)(X, 1) = {K(’[)—CB(H e (X)), (Xt)eD,p

So we assign to the above mixed problem the following system of operator equations

Co(xt)=0, (x,t)eD,;:

Ce(X,1) =Cgy + j.klcsn(ls (%,8),8) _kchn(}(B (%,8),8)ds, (x,t) €Dy

|
VB

Co(x,1)=Cpy, (X1) €Dy p (®)

ColA ) =x()~Co" (A 2o (D) + [ (-KCo" (20 (%,8),8) +K,C" (1 (x,5).5) s (%,1) € D

g H=x
Vp

Introduce the function sets:

Mg ={ Co € C([0,H]x[0,T1:[C, (x,1)| < Ce, x [0, H1},

M, =1{C, € C(I0,H]x[0,T]:[Co (x, 1) < Cpe, x € [0, H]},
where CB,CP and g are positive constants.

It is easy to verify that the set Mg x M turns out into a complete metric space with respect to the
metric:

P((Cs.Cp).(Cy.Cp)) = max 1(Cy,Cy), o(Cp.Cp) |, where

p(Ca,Ca) =suple [C.(x,) ~Cy (x,B)]: (x,1) €[0,HIX[0,T1],
p(C,..C.) =sup{e""‘CP () =Co(x,)]: (x,H) [0, H]x[O,T]}.

Now we define an operator T =(T5,Tp): Mg xMp — Mg xM, by the formulas

Te(Ce, Co)(x,1) =0, (x,t) € Din,B ;

T (G, Co)(X,t) = Cgp + j KCg" (15 (X,1),8) —K,Cp" (15 (X, 1),8)ds, (X,1) € Dyg

X
VB

To(Cy,Co)(X,1):=Cpp,  (X1) €Dy,
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t

To (Cg, Co) (X, )= x(t) _CBn(HJ(P (x,1)) + J.(_ k1CBn(7(P (x,1),8) + kchn(lp (X,t),S))jS

_H-x
Vp

t

(X,t) € Dy .

I11. EXISTENCE THEOREM
We call a generalized solution (Cg,Cp) of (4),(5) if (Cg,Cp)is a solution of integral equations (8).
The main purpose of the section is to prove an existence of solution of (8).
Theorem 1. Let the following conditions be fulfilled for sufficiently large >0 and O<e<H:

(1+ kl)éB + kzép

1) " e"T < éB;
v > > .
2) {IQ‘+CBE vp +M]eﬂ <Cp;
7]

3)n max{e”T (kiCq +k,Cp) ;CBewW +e kG +k,Cp } <1
2u 2u

8)Cyy <Cp: Cpp <Cp:
5) K = sup{x(t) :t [0, T]}<1.

Then there exists a unique solution of (8) on the set [0, H —&]x[0,T].

Proof: We show that the operator T = (Tg, T ): Mg xM, — Mg x M, above introduced maps
the set Mg xMp into itself.

We notice that Tz (Cg,Cp)(X,t) and T, (Cg,Cp)(X,t) are continuous functions.
First we have to show that |TB (CB,CP)(X,t)| < éBe"t, |TP (CB,CP)(X,t)| < épe“t.
Indeed, |®B(CB,CP)(X,t)|:O and therefore in view of |CB(;(B,S)|£1 ,|CP(;(B,S)|31 and

n>1,itfollows [Cq (s S)| <|Cs(xs.9); |Co(Xa:S)| <[Cr(xs.9)|- Then

t
|TB (CB'CP)(Xit)| <Cpgp + J.(k1|CB (;(B’S)|n + k2|CP (Ze. s)|n>js <

t——

VB

t

<Cgqo+ J-(kl|CB (e S)| + k2|CP (s S)|)dS <
Ve

. .\ . . \eH _gHt-vex)

<[k )G, +kGCp) [ereds <((1+K,)C, + kch)n— <
X H
VB

< (1+ kl)éB + kZéP emteut < (1+ kl)éB + kzép eyTe,ut < éBeyt .

H H

For the second component we have

t

|TP (CB’CP)(X’t)| < | K(t)| + |CB (H, 2 (X:t))|n + .[k1|CB (ZP’S)F + k2|CP (ZP1S)|n ds <
H-x

Ve

t
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t
< | K(t)|+|CB(H’ZP (X,t))|+ Ik1|CB(ZP15)|+ k2|CP(7(P’S)|dS =
H-x

t—

H-x

H-x A A A A
s o kCo +k,C
<ke“+Cee " P +Me”‘s[zc+cse Ve L 1B T 2P oM <

7

for sufficiently large 2> 0.
The following inequalities are valid: for (X,t) € Djgand n>2=>n-1>1

‘TB (Ce, Co)X, )Ty (C_:B J CP)(X! t)‘ <

< J.kl‘CBn(ZB (X,1),s) _c_:Bn(ZB (X,t),S)‘ + kZ‘CPn(ZB (x1),s) _Epn(}(B (x,1),8)/ds <

e
VB

<k [ICa" (e (% 0),)|Ca (s (X,1),9) ~Ca (2 (x, 1), 5)|ds +

X
VB

o J1C0™ (6 (61, 8)|Co (26 (x,1),5) = Co (s (X, 1) s <

X
VB

t
<kin [Coe”(Cq (25 (X1),5)~Cy (5 (X,1),5)|ds +

X
VB

t
kN [Coe|Cp (25 (,1),5) = Co (25 (X,1),5)|ds <

=X
VB

< p(C4.Cy Ik, G, 't[ez”sds+p(cp,fp)nkzép j'ez“sdsﬁ

t—i t_i
Vg VB
- - . . 24t ~2u(t-VBX)
< max{p(Cy.Cy ) p(Co Co Ik Gy + kch)% <

i NKCq +k;)

<ot le,.) (6, 0, Jo "

Consequently

T (Ca.Co) Ty (C,.Co))< e ”(kp;;"zc” H(CarC).(CoCo)).

For the second component we have
‘TP (Ce, Cp) (X, 1) —To (Cy, G )(X, t)‘ < ‘CBn (H, 2o (6, )=C" (H, 2o (X, 1))+

<[Co"(H, 25 (6 1) ~C" (H, 2o (1) +
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< j‘kl‘CBn(ZP’S) _C_:BH(ZP'S)‘ + kZ‘CPn(ZP’S) _c_:Pn(ZP'S)‘dS <
t_H—x

Vp
<nCo|"[Cq (H. 25 (1)) ~Cy (H, o (1)) +
t
+n J.k1|CB|n_l CB(}(P'S)_(—:B(ZP'S)“" k2|CP|n_1 CP(ZPnS)_(_:P(ZP’S)‘dS <
t—H_X
Vp

< p<CB’CB)nCB e +p(CB'(_:B )kl

t—

e?*ds +p(CP ,Cp )k2 Jt'ez”sds <
. =

T—

A,
A

< p(Cy.Cy )néBe#( ve j +p(C,,Cy )k, C, j‘e”sds +p(C,Co K, G, j-e“sds <
R (A=x
Vp Vp

L . _ GZut_ezﬂ(F%j _ _
<ep(C,,ConCoe Y +p(Cy.Cy Ky . +p(Co.Co K, . <

t

s et — < aloe v
<e | p(Cy,ConChe P + pl(C,,Cy Ik, Gt =

X

H7 ~ A
7;1W +e#-|- nleB ‘;nkzncp J

p((Cs.Cs),(Cy,Cp)) <

which implies

p(TP (Cs,Cp).To (Cs, (_:p))S (em nk,Cg +nk,nC,

Jp((CB Ce). (Cs,Cr)).

2u
Since A A
p(T5(Co.Co).To(Cy.Co))< pl(Co Co ). (C,. o b n(klc:B2 ; kCo) 4
and
p(TP (CB’CP)’TP (68'6P))S p((CB’CP )’ (c_:s’ép){néBe e +etT nleB ananPJ,
Y7,
it follows o - o
max{p(T, (Cs,Cp), s (Cy.Cp)) ATo (C4.Cp ). To (Cs . Co) )} < L((C, C, ) (C, . Co ).
where

L =n max< e " (leB +kch) é eiﬂ% et k1CB +kZCP <1
2u ° 24
In this way we have shown that T is a contractive operator. The fixed point of T is a solution of the

mixed problem above formulated.
The main Theorem is thus proved.
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IV. CONCLUSION REMARKS
Here we show the process of obtaining of successive approximations. We can begin with the first

approximation choosing the constants C,” (x,t) =Cyg,, Co” (X,t) =C,, .Then

CB(m+l) (X,t) _ CBO + Jt.kl(CB(m) (ZB (X’t)’ S))ﬁ — k2 (Cp(m) (ZB (X,t), S))‘ dS, (X,t) EHOB

——

VB
C" A =) -C " (A, 2 (D) + | (— K (Co™ (e (,0,9)) +k, (Co” (0 (%, s),t))P)js :
(x,t) elyp.
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